• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    王雪鉴, 王自法, 周坤伯, Jianming Wang, 李兆焱, 2025. 基于多源GNSS和地震数据融合的GeoViT-PFN地震活动性预测. 地球科学. doi: 10.3799/dqkx.2025.248
    引用本文: 王雪鉴, 王自法, 周坤伯, Jianming Wang, 李兆焱, 2025. 基于多源GNSS和地震数据融合的GeoViT-PFN地震活动性预测. 地球科学. doi: 10.3799/dqkx.2025.248
    Xuejian Wang, Zifa Wang, Kunbo Zhou, Jianming Wang, Zhaoyan Li, 2025. GeoViT-PFN Seismic Activity Prediction Based on Multi-Source GNSS and Seismic Data Fusion. Earth Science. doi: 10.3799/dqkx.2025.248
    Citation: Xuejian Wang, Zifa Wang, Kunbo Zhou, Jianming Wang, Zhaoyan Li, 2025. GeoViT-PFN Seismic Activity Prediction Based on Multi-Source GNSS and Seismic Data Fusion. Earth Science. doi: 10.3799/dqkx.2025.248

    基于多源GNSS和地震数据融合的GeoViT-PFN地震活动性预测

    doi: 10.3799/dqkx.2025.248
    基金项目: 

    国家重点研发计划(2023YFC3805203)

    中国地震局工程力学研究所基本科研业务费专项资助项目(项目编号:2023A01)

    国家自然科学基金面上项目(52378544,52378543)

    详细信息
      作者简介:

      王雪鉴(2001-),男,硕士研究生,主要从事地震预测研究,E-mail:1415381525@qq.com,ORCID:https://orcid.org/0009-0001-5240-7414

      通讯作者:

      王自法(1965-),男,研究员,博士,主要从事巨灾风险相关研究,E-mail:zifa@iem.ac.cn

    • 中图分类号: P315

    GeoViT-PFN Seismic Activity Prediction Based on Multi-Source GNSS and Seismic Data Fusion

    • 摘要: 本文针对地震预测中多源异构数据难以有效融合与标签不对齐的挑战,提出了一种基于多模态机器学习框架的GeoViT-PFN模型,重点引入GNSS形变图像与地震参数协同建模的新方法。该模型将GNSS台网位移数据通过距离加权插值转换为图像时序,同时从地震目录中提取b值、a值作为表格序列;采用视觉Transformer(ViT)对图像进行编码并经PCA降维,与地震特征融合后输入基于Transformer的TabPFN解码器进行回归预测。实验表明,所提出的多模态融合方法在测试集上预测地震活动性的误差(MSE)降低至0.7×10-4,决定系数(R2)为0.97,相较于单模态提升约50%。验证了GNSS形变与地震统计参数协同的有效性,且该框架具备可扩展性,能够为集成多源地球物理数据提供思路。

       

    • Borate, P., Rivière, J., Marone, C., Mali, A., Kifer, D., & Shokouhi, P. (2023). Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes. Nat. Commun., 14, 3693. https://doi.org/10.1038/s41467-023-39377-6
      Bletery, Q., & Nocquet, J.-M. (2023). The precursory phase of large earthquakes. Science, 381(6655), 297–301. https://doi.org/10.1126/science.adg2565
      Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GNSS data explosion for interdisciplinary science. Eos, 99(2), e2020943118. https://doi.org/10.1029/2018eo104623
      Chen, Y. T. (2007). Earthquake prediction-Progress, difficulties, and prospects. Seismological and Geomagnetic Observation and Research, (2), 1-24. (in Chinese with English abstract)
      Chen, Y. C. (2017). A tutorial on kernel density estimation and recent advances. Biostatistics & Epidemiology, 1(1), 161-187. https://doi.org/10.1080/24709360.2017.1396742
      Chen, Y. T. (2009). Earthquake prediction: Retrospect and prospect. Science in China Series D: Earth Sciences, 39(12), 1633-1658. (in Chinese with English abstract)
      Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (ICLR). https://arxiv.org/pdf/2010.11929/1000
      Gu, G. H. (2023). Precursory horizontal deformation before large earthquakes measured by GNSS. Earthquake Research in China, 39(4), 721-731. (in Chinese with English abstract)
      Gao, Y. J., Sun, Y. Q., & Luo, G. (2022). Spatio-temporal evolution of b-values and stress field in the Taiwan region before and after the 1999 Chi-Chi earthquake. Chinese Journal of Geophysics, *65*(6), 2137–2152. (in Chinese with English abstract)
      Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A., Körfer, M., Hoo, S. B., ... & Hutter, F. (2025). Accurate predictions on small data with a tabular foundation model. Nature, 637(8045), 319-326. https://doi.org/10.1038/s41586-024-08328-6
      Huang, P., Lv, W., Huang, R., Luo, Q., & Yang, Y. (2024). Earthquake precursors: A review of key factors influencing radon concentration. J. Environ. Radioact., 271, 107310. https://doi.org/10.1016/j.jenvrad.2023.107310
      Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GNSS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. https://doi: 10.1016/j.tecto.2008.11.016
      Jiang, H. K., & Zhou, S. H. (2020). Foreshocks: Predictive significance and identification methods. Seismological and Geomagnetic Observation and Research, 41(5), 222-225. (in Chinese with English abstract)
      Jiang, Z. S., & Liu, J. N. (2010). A method for establishing crustal movement velocity and strain fields using least-squares collocation. Chinese Journal of Geophysics, 53(5), 1109, 1116–1117. (in Chinese with English abstract)
      Liu, Z. J., Liu, J., & Shao, Z. G. (2023). Reliable precursory signals of large earthquakes detected by high-frequency GNSS observations? Chinese Science Bulletin, 68(33), 4442-4444. (in Chinese with English abstract)
      Li, M. Y., Zeng, X. W., Yao, H. J., et al. (2024). Variation of b-values before and after the September 5, 2022, Luding M6.8 earthquake and its aftershocks in Sichuan, China. China Earthquake Engineering Journal, 46(5), 1214–1222. (in Chinese with English abstract)
      Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. (2024). Timer: Generative pre-trained transformers are large time series models. arXiv preprint arXiv:2402.02368.
      Lu, J. Q., Wang, Y. J., Li, S. Y., et al. (2025). An on-site PGV prediction model based on XGBoost. Earth Science, 50(5), 1861–1874. (in Chinese with English abstract)
      Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun., 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w
      Ma, Z., 2008. China's natural disasters and mitigation measures(six). J. of Institute of Disaster-Prevention Science and Technology 10 (1), 1–4. (in Chinese with English abstract)
      Meyer, D. (2002). Naive time series forecasting methods.R news,2(2), 7-10. https://journal.r-project.org/articles/RN-2002-008/
      Moghadamnejad, A., Moghaddasi, M. A., Hamidia, M., Mohammadi, R. K., & Zare, M. (2026). Ranking earthquake prediction algorithms: A comprehensive review of machine learning and deep learning methods. Soil Dynamics and Earthquake Engineering, 200(Part A), 109740. https://doi.org/10.1016/j.soildyn.2025.109740
      Ruan, Q., Yuan, X., Liu, H., et al. (2023). Study on co-seismic ionospheric disturbance of Alaska earthquake on July 29, 2021 based on GNSS TEC. Sci. Rep., 13, 10679. https://doi.org/10.1038/s41598-023-37374-9
      Shi, P., 2002. Theory on disaster science and disaster dynamics. J. Nat. Disasters 11 (3), 1–9. (in Chinese with English abstract)
      Shen, Z. K., Wang, M., Zeng, Y., & Wang, F. (2015). Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4), 2117-2127. https://doi.org/10.1785/0120140247
      Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180(1), 433-462. https://doi: 10.1111/j.1365-246X.2009.04429.x
      Wang, J. H., & Jiang, H. K. (2023). A review of machine learning-based earthquake prediction research based on seismic observation data. Journal of Seismological Research, 46(2), 173-187. https://doi.org/10.20015/j.cnki.issn1000-0666.2023.0022(in Chinese with English abstract)
      Wang, Q., Xu, X., Jiang, Z., et al. (2020). A possible precursor prior to the Lushan earthquake from GNSS observations in the southern Longmenshan. Sci. Rep., 10, 20833. https://doi.org/10.1038/s41598-020-77634-6
      Wang, K. Y., Jin, M. P., Huang, Y., et al. (2021). Spatio-temporal evolution of the May 21, 2021, Yangbi MS6.4 earthquake sequence in Yunnan, China. Seismology and Geology, *43*(4), 1030–1039. (in Chinese with English abstract)
      Wu, Z., Xu, T., Liang, C., Wu, C., & Liu, Z. (2018). Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions. Geophysical Journal International, 212(3), 1920-1931. https://doi.org/10.1093/gji/ggx521
      Zhao, J. D., & Zhang, Z. Q. (2009). Development, application, and implications of earthquake early warning systems. Geological Bulletin of China, 28(4), 456-462. (in Chinese with English abstract)
      Zhou, S. H., & Jiang, H. K. (2016). A review of research progress on foreshocks. Earthquake, 36(3), 1-13. (in Chinese with English abstract)
      Zhu, J. B., Li, S. Y., & Song, J. D. (2025). A multi-modal deep learning-based prediction model for instrumental seismic intensity in China. Earth Science, 1–20. [Online first]. Retrieved August 13, 2025. (in Chinese with English abstract)
      陈运泰.地震预测--进展、困难与前景[J].地震地磁观测与研究,2007,(02):1-24.
      赵纪东,张志强.地震预警系统的发展、应用及启示[J].地质通报,2009,28(04):456-462.
      王锦红,蒋海昆.基于地震观测数据的机器学习地震预测研究综述[J].地震研究,2023,46(02):173-187.DOI: 10.20015/j.cnki.issn1000-0666.2023.0022.
      陈运泰.地震预测:回顾与展望[J].中国科学(D辑:地球科学),2009,39(12):1633-1658.
      顾国华.GNSS测得的大地震前兆水平形变[J].中国地震,2023,39(04):721-731.
      刘志军,刘静,邵志刚.高频GNSS观测发现可靠的大地震前兆信号?[J].科学通报,2023,68(33):4442-4444.
      蒋海昆,周少辉.前震:预测意义及识别方法[J].地震地磁观测与研究,2020,41(05):222-225.
      周少辉,蒋海昆.前震研究进展综述[J].地震,2016,36(03):1-13.
      李蒙亚,曾宪伟,姚华建,等.2022年9月5日四川泸定6.8级地震及其余震前后b值变化[J].地震工程学报,2024,46(05):1214-1222.
      王凯英,金明培,黄雅,等.2021年5月21日云南漾濞MS6.4地震序列的时空演化[J].地震地质,2021,43(04):1030-1039.
      高雅婧,孙云强,罗纲.1999年集集地震前后台湾地区地震b值及应力场时空演化特征[J].地球物理学报,2022,65(06):2137-2152.
      江在森,刘经南.应用最小二乘配置建立地壳运动速度场与应变场的方法[J].地球物理学报,2010,53(05):1109+1116-1117.
      陈建玮,陈国雄,王德涛,等.基于BiX-NAS的地震层序智能识别--以荷兰近海地区F3数据为例[J].地球科学,2023,48(08):3162-3178.
      胡进军,丁祎天,张辉,等.基于长短期记忆神经网络的实时地震烈度预测模型[J].地球科学,2023,48(05):1853-1864.
    • 加载中
    计量
    • 文章访问数:  8
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-06
    • 网络出版日期:  2025-12-03

    目录

      /

      返回文章
      返回