|
Borate, P., Rivière, J., Marone, C., Mali, A., Kifer, D., & Shokouhi, P. (2023). Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes. Nat. Commun., 14, 3693. https://doi.org/10.1038/s41467-023-39377-6 |
|
Bletery, Q., & Nocquet, J.-M. (2023). The precursory phase of large earthquakes. Science, 381(6655), 297–301. https://doi.org/10.1126/science.adg2565 |
|
Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GNSS data explosion for interdisciplinary science. Eos, 99(2), e2020943118. https://doi.org/10.1029/2018eo104623 |
|
Chen, Y. T. (2007). Earthquake prediction-Progress, difficulties, and prospects. Seismological and Geomagnetic Observation and Research, (2), 1-24. (in Chinese with English abstract) |
|
Chen, Y. C. (2017). A tutorial on kernel density estimation and recent advances. Biostatistics & Epidemiology, 1(1), 161-187. https://doi.org/10.1080/24709360.2017.1396742 |
|
Chen, Y. T. (2009). Earthquake prediction: Retrospect and prospect. Science in China Series D: Earth Sciences, 39(12), 1633-1658. (in Chinese with English abstract) |
|
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (ICLR). https://arxiv.org/pdf/2010.11929/1000 |
|
Gu, G. H. (2023). Precursory horizontal deformation before large earthquakes measured by GNSS. Earthquake Research in China, 39(4), 721-731. (in Chinese with English abstract) |
|
Gao, Y. J., Sun, Y. Q., & Luo, G. (2022). Spatio-temporal evolution of b-values and stress field in the Taiwan region before and after the 1999 Chi-Chi earthquake. Chinese Journal of Geophysics, *65*(6), 2137–2152. (in Chinese with English abstract) |
|
Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A., Körfer, M., Hoo, S. B., ... & Hutter, F. (2025). Accurate predictions on small data with a tabular foundation model. Nature, 637(8045), 319-326. https://doi.org/10.1038/s41586-024-08328-6 |
|
Huang, P., Lv, W., Huang, R., Luo, Q., & Yang, Y. (2024). Earthquake precursors: A review of key factors influencing radon concentration. J. Environ. Radioact., 271, 107310. https://doi.org/10.1016/j.jenvrad.2023.107310 |
|
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GNSS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. https://doi: 10.1016/j.tecto.2008.11.016 |
|
Jiang, H. K., & Zhou, S. H. (2020). Foreshocks: Predictive significance and identification methods. Seismological and Geomagnetic Observation and Research, 41(5), 222-225. (in Chinese with English abstract) |
|
Jiang, Z. S., & Liu, J. N. (2010). A method for establishing crustal movement velocity and strain fields using least-squares collocation. Chinese Journal of Geophysics, 53(5), 1109, 1116–1117. (in Chinese with English abstract) |
|
Liu, Z. J., Liu, J., & Shao, Z. G. (2023). Reliable precursory signals of large earthquakes detected by high-frequency GNSS observations? Chinese Science Bulletin, 68(33), 4442-4444. (in Chinese with English abstract) |
|
Li, M. Y., Zeng, X. W., Yao, H. J., et al. (2024). Variation of b-values before and after the September 5, 2022, Luding M6.8 earthquake and its aftershocks in Sichuan, China. China Earthquake Engineering Journal, 46(5), 1214–1222. (in Chinese with English abstract) |
|
Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., & Long, M. (2024). Timer: Generative pre-trained transformers are large time series models. arXiv preprint arXiv:2402.02368. |
|
Lu, J. Q., Wang, Y. J., Li, S. Y., et al. (2025). An on-site PGV prediction model based on XGBoost. Earth Science, 50(5), 1861–1874. (in Chinese with English abstract) |
|
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun., 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w |
|
Ma, Z., 2008. China's natural disasters and mitigation measures(six). J. of Institute of Disaster-Prevention Science and Technology 10 (1), 1–4. (in Chinese with English abstract) |
|
Meyer, D. (2002). Naive time series forecasting methods.R news,2(2), 7-10. https://journal.r-project.org/articles/RN-2002-008/ |
|
Moghadamnejad, A., Moghaddasi, M. A., Hamidia, M., Mohammadi, R. K., & Zare, M. (2026). Ranking earthquake prediction algorithms: A comprehensive review of machine learning and deep learning methods. Soil Dynamics and Earthquake Engineering, 200(Part A), 109740. https://doi.org/10.1016/j.soildyn.2025.109740 |
|
Ruan, Q., Yuan, X., Liu, H., et al. (2023). Study on co-seismic ionospheric disturbance of Alaska earthquake on July 29, 2021 based on GNSS TEC. Sci. Rep., 13, 10679. https://doi.org/10.1038/s41598-023-37374-9 |
|
Shi, P., 2002. Theory on disaster science and disaster dynamics. J. Nat. Disasters 11 (3), 1–9. (in Chinese with English abstract) |
|
Shen, Z. K., Wang, M., Zeng, Y., & Wang, F. (2015). Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4), 2117-2127. https://doi.org/10.1785/0120140247 |
|
Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180(1), 433-462. https://doi: 10.1111/j.1365-246X.2009.04429.x |
|
Wang, J. H., & Jiang, H. K. (2023). A review of machine learning-based earthquake prediction research based on seismic observation data. Journal of Seismological Research, 46(2), 173-187. https://doi.org/10.20015/j.cnki.issn1000-0666.2023.0022(in Chinese with English abstract) |
|
Wang, Q., Xu, X., Jiang, Z., et al. (2020). A possible precursor prior to the Lushan earthquake from GNSS observations in the southern Longmenshan. Sci. Rep., 10, 20833. https://doi.org/10.1038/s41598-020-77634-6 |
|
Wang, K. Y., Jin, M. P., Huang, Y., et al. (2021). Spatio-temporal evolution of the May 21, 2021, Yangbi MS6.4 earthquake sequence in Yunnan, China. Seismology and Geology, *43*(4), 1030–1039. (in Chinese with English abstract) |
|
Wu, Z., Xu, T., Liang, C., Wu, C., & Liu, Z. (2018). Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions. Geophysical Journal International, 212(3), 1920-1931. https://doi.org/10.1093/gji/ggx521 |
|
Zhao, J. D., & Zhang, Z. Q. (2009). Development, application, and implications of earthquake early warning systems. Geological Bulletin of China, 28(4), 456-462. (in Chinese with English abstract) |
|
Zhou, S. H., & Jiang, H. K. (2016). A review of research progress on foreshocks. Earthquake, 36(3), 1-13. (in Chinese with English abstract) |
|
Zhu, J. B., Li, S. Y., & Song, J. D. (2025). A multi-modal deep learning-based prediction model for instrumental seismic intensity in China. Earth Science, 1–20. [Online first]. Retrieved August 13, 2025. (in Chinese with English abstract) |
|
陈运泰.地震预测--进展、困难与前景[J].地震地磁观测与研究,2007,(02):1-24. |
|
赵纪东,张志强.地震预警系统的发展、应用及启示[J].地质通报,2009,28(04):456-462. |
|
王锦红,蒋海昆.基于地震观测数据的机器学习地震预测研究综述[J].地震研究,2023,46(02):173-187.DOI: 10.20015/j.cnki.issn1000-0666.2023.0022. |
|
陈运泰.地震预测:回顾与展望[J].中国科学(D辑:地球科学),2009,39(12):1633-1658. |
|
顾国华.GNSS测得的大地震前兆水平形变[J].中国地震,2023,39(04):721-731. |
|
刘志军,刘静,邵志刚.高频GNSS观测发现可靠的大地震前兆信号?[J].科学通报,2023,68(33):4442-4444. |
|
蒋海昆,周少辉.前震:预测意义及识别方法[J].地震地磁观测与研究,2020,41(05):222-225. |
|
周少辉,蒋海昆.前震研究进展综述[J].地震,2016,36(03):1-13. |
|
李蒙亚,曾宪伟,姚华建,等.2022年9月5日四川泸定6.8级地震及其余震前后b值变化[J].地震工程学报,2024,46(05):1214-1222. |
|
王凯英,金明培,黄雅,等.2021年5月21日云南漾濞MS6.4地震序列的时空演化[J].地震地质,2021,43(04):1030-1039. |
|
高雅婧,孙云强,罗纲.1999年集集地震前后台湾地区地震b值及应力场时空演化特征[J].地球物理学报,2022,65(06):2137-2152. |
|
江在森,刘经南.应用最小二乘配置建立地壳运动速度场与应变场的方法[J].地球物理学报,2010,53(05):1109+1116-1117. |
|
陈建玮,陈国雄,王德涛,等.基于BiX-NAS的地震层序智能识别--以荷兰近海地区F3数据为例[J].地球科学,2023,48(08):3162-3178. |
|
胡进军,丁祎天,张辉,等.基于长短期记忆神经网络的实时地震烈度预测模型[J].地球科学,2023,48(05):1853-1864. |