• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    夏登科, 房立华, 蒋策, 范莉苹, 李君, 吕帅, 李帅, 索朗占堆, 2025. AIRES智能实时地震处理系统在稀疏台网下的应用—以2025年定日地震为例. 地球科学. doi: 10.3799/dqkx.2025.253
    引用本文: 夏登科, 房立华, 蒋策, 范莉苹, 李君, 吕帅, 李帅, 索朗占堆, 2025. AIRES智能实时地震处理系统在稀疏台网下的应用—以2025年定日地震为例. 地球科学. doi: 10.3799/dqkx.2025.253
    Xia Dengke, Fang Lihua, Jiang Ce, Fan Liping, Li Jun, Lü Shuai, Li Shuai, Suolang Zhandui, 2025. Application of the Artificial Intelligence Real-time Earthquake processing System(AIRES) under a Sparse Seismic Network: A Case Study of the 2025 Dingri Earthquake. Earth Science. doi: 10.3799/dqkx.2025.253
    Citation: Xia Dengke, Fang Lihua, Jiang Ce, Fan Liping, Li Jun, Lü Shuai, Li Shuai, Suolang Zhandui, 2025. Application of the Artificial Intelligence Real-time Earthquake processing System(AIRES) under a Sparse Seismic Network: A Case Study of the 2025 Dingri Earthquake. Earth Science. doi: 10.3799/dqkx.2025.253

    AIRES智能实时地震处理系统在稀疏台网下的应用—以2025年定日地震为例

    doi: 10.3799/dqkx.2025.253
    基金项目: 

    国家自然科学基金(No.42374081)

    详细信息
      作者简介:

      夏登科(2001-),男,博士研究生,主要从事人工智能地震检测算法研究.ORCID:0009-0007-6318-941X.E-mail:dengkexia@gmail.com

      通讯作者:

      房立华(1981-),男,博士,研究员,主要从事人工智能地震学研究.ORCID:0000-0003-2156-4406.E-mail:fanglihua@ief.ac.cn

    • 中图分类号: P315

    Application of the Artificial Intelligence Real-time Earthquake processing System(AIRES) under a Sparse Seismic Network: A Case Study of the 2025 Dingri Earthquake

    • 摘要: 2025年1月7日西藏定日发生MW7.1地震,造成严重人员伤亡。本文利用定日地震周边12个固定台站与震后布设的6个流动台站数据,应用AIRES( A rtificial I ntelligence R eal-time E arthquake processing S ystem)智能实时地震处理系统对余震序列进行处理,评估AIRES在稀疏台网下的应用效果。AIRES基于深度学习算法,自动从实时波形中完成地震检测、震相到时拾取、事件关联及震源参数反演。与人工目录对比表明,AIRES检测余震11,242次,是人工目录的2.53倍,完备震级降至ML1.5;两个目录的平均震中差异为4.69km、平均震源深度差异为5.71km、平均震级差为-0.02。定日地震的余震分布在南北向长度约80km,东西向宽度约30km的区域内,并具有明显的分段和拐折特征。研究表明,在台网稀疏场景下,AIRES仍能保持稳健的检测能力与定位精度,可为密集地震序列实时监测和地震应急提供技术支撑。

       

    • He, J., Yang, K., Tang, W.J., et al., 2020. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies Over China.Scientific Data, 7(1): 25. doi: 10.1038/s41597-020-0369-y
      Jia, K., Zhou, S., 2024. Machine Learning Applications in Seismology.Applied Sciences, 14(17): 7857. doi: 10.3390/app14177857
      Kato, A., Obara, K., 2014. Step-Like Migration of Early Aftershocks Following the 2007 Mw 6.7 Noto-Hanto Earthquake, Japan.Geophysical Research Letters, 41(11): 3864-3869. doi: 10.1002/2014GL060427
      Kuyuk, H.S., Allen, R.M., 2013. Optimal Seismic Network Density for Earthquake Early Warning: A Case Study from California.Seismological Research Letters, 84(6): 946-954. doi: 10.1785/0220130043
      Laske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust. In:Geophys. Res. Abstracts, 15: Abstract EGU2013-2658.
      Li, S., Fang, L.H., Xiao, Z.W., et al., 2023. FocMech-Flow: Automatic Determination of P-Wave First-Motion Polarity and Focal Mechanism Inversion and Application to the 2021 Yangbi Earthquake Sequence.Applied Sciences, 13(4): 2233. doi: 10.3390/app13042233
      Liu, M., Zhang, M., Zhu, W.Q., et al., 2020. Rapid Characterization of the July 2019 Ridgecrest, California, Earthquake Sequence From Raw Seismic Data Using Machine-Learning Phase Picker.Geophysical Research Letters, 47(4): e2019GL086189. doi: 10.1029/2019GL086189
      Peng, Z.G., Zhao, P., 2009. Migration of Early Aftershocks Following the 2004 Parkfield Earthquake.Nature Geoscience, 2(12): 877-881. doi: 10.1038/ngeo697
      Ross, Z.E., Meier, M., Hauksson, E., et al., 2018. Generalized Seismic Phase Detection with Deep Learning.Bulletin of the Seismological Society of America, 108(5A): 2894-2901. doi: 10.1785/0120180080
      Schweitzer, J., 2001. HYPOSAT – An Enhanced Routine to Locate Seismic Events.Pure and Applied Geophysics, 158(1): 277-289. doi: 10.1007/PL00001160
      Si, X., Wu, X.M., Li, Z.F., et al., 2024. An All-in-One Seismic Phase Picking, Location, and Association Network for Multi-Task Multi-Station Earthquake Monitoring.Communications Earth & Environment, 5(1): 22. doi: 10.1038/s43247-023-01188-4
      Wang, R.J., Schmandt, B., Zhang, M., et al., 2020. Injection-Induced Earthquakes on Complex Fault Zones of the Raton Basin Illuminated by Machine-Learning Phase Picker and Dense Nodal Array.Geophysical Research Letters, 47(14): e2020GL088168. doi: 10.1029/2020GL088168
      Yao, J.Y., Yao, D.D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 MS6.8 Dingri, Xizang Earthquake.Journal of Earth Science, 36(2): 856-860. doi: 10.1007/s12583-025-0210-9
      Yoon, C.E., Cochran, E.S., Vanacore, E.A., et al., 2023. A Detailed View of the 2020–2023 Southwestern Puerto Rico Seismic Sequence with Deep Learning.Bulletin of the Seismological Society of America. doi: 10.1785/0120220229
      Zhang, M., Liu, M., Feng, T., et al., 2022. LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow.Seismological Research Letters, 93(5): 2426-2438. doi: 10.1785/0220220019
      Zhang, X., Zhang, M., 2024. Universal Neural Networks for Real-Time Earthquake Early Warning Trained with Generalized Earthquakes.Communications Earth & Environment, 5(1): 1-16. doi: 10.1038/s43247-024-01718-8
      Zhao, M., Xiao, Z.W., Zhang, M., et al., 2023. DiTingMotion: A Deep-Learning First-Motion-Polarity Classifier and Its Application to Focal Mechanism Inversion.Frontiers in Earth Science, 11. doi: 10.3389/feart.2023.1103914
      Zhou, Y.J., Ding, H.Y., Ghosh, A., et al., 2025. AI-PAL: Self-Supervised AI Phase Picking via Rule-Based Algorithm for Generalized Earthquake Detection.Journal of Geophysical Research: Solid Earth, 130(4): e2025JB031294. doi: 10.1029/2025JB031294
      Zhou, Y.J., Ghosh, A., Fang, L.H., et al., 2021. A High-Resolution Seismic Catalog for the 2021MS6.4/MW6.1 Yangbi Earthquake Sequence, Yunnan, China: Application of AI Picker and Matched Filter. Earthquake Science, 34(5): 390-398. doi: 10.29382/eqs-2021-0031
      Zhou, Y.J., Yue, H., Fang, L.H., et al., 2022. An Earthquake Detection and Location Architecture for Continuous Seismograms: Phase Picking, Association, Location, and Matched Filter (PALM).Seismological Research Letters, 93(1): 413-425. doi: 10.1785/0220210111
      Zhu, J., Li, Z.F., Fang, L.H., 2023. USTC-Pickers: A Unified Set of Seismic Phase Pickers Transfer Learned for China.Earthquake Science, 36(2): 95-112. doi: 10.1016/j.eqs.2023.03.001
      Zhu, W.Q., Beroza, G.C., 2018. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method.Geophysical Journal International. doi: 10.1093/gji/ggy423
      Zhu, W.Q., Hou, A.B., Yang, R., et al., 2023. QuakeFlow: A Scalable Machine-Learning-Based Earthquake Monitoring Workflow with Cloud Computing.Geophysical Journal International, 232(1): 684-693. doi: 10.1093/gji/ggac355
      Zhu, W.Q., McBrearty, I.W., Mousavi, S.M., et al., 2022. Earthquake Phase Association Using a Bayesian Gaussian Mixture Model.Journal of Geophysical Research: Solid Earth, 127(5): e2021JB023249. doi: 10.1029/2021JB023249
      Zhu, W.Q., Mousavi, S.M., Beroza, G.C., 2019. Seismic Signal Denoising and Decomposition Using Deep Neural Networks.IEEE Transactions on Geoscience and Remote Sensing, 57(11): 9476-9488. doi: 10.1109/TGRS.2019.2926772
      白玛桑布, 单增曲珠, 次旦卓玛, 等, 2024. 观测环境变化对日喀则地震台观测质量的影响. 地震地磁观测与研究, 45(05): 67-73.
      蒋策, 2025. 区域台网地震数据智能处理方法研究与应用[博士论文]. 北京: 中国地震局地球物理研究所
      廖诗荣, 张红才, 范莉苹, 等, 2021. 实时智能地震处理系统研发及其在2021年云南漾濞MS6.4地震中的应用. 地球物理学报, 64(10): 3632-3645. doi: 10.6038/cjg2021O0532
      刘瑞丰, 陈运泰, 薛峰, 等, 2018. 如何正确使用新的震级国家标准. 地震地磁观测与研究, 39(04): 1-11. doi: 10.3969/j.issn.1003-3246.2018.04.001
      屈春燕, 2008. 最新1/400万中国活动构造空间数据库的建立. 地震地质, 30(1): 298-304. doi: 10.3969/j.issn.0253-4967.2008.01.022
      盛书中, 王倩茹, 李振月, 等, 2025. 基于构造应力场研究2025年西藏定日6.8级地震的发震构造. 地震地质, 47(1): 49. doi: 10.3969/j.issn.0253-4967.2025.01.004
      田婷婷, 吴中海, 2023. 西藏申扎-定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(s1): 53-55. doi: 10.16509/j.georeview
      王祖东, 杨晓鹏, 尹欣欣, 等, 2022. 2022年1月8日青海门源MS6.9地震余震序列自动处理结果探讨. 地震工程学报, 44(2): 408-414. doi: 10.20000/j.1000-0844.20220125002
      许志琴, 杨经绥, 李海兵, 等, 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1-33.
      杨磊, 雷红富, 游家兴, 等, 2023. 向家坝、溪洛渡库区地震尾波Qc值估计. 大地测量与地球动力学, 43(4): 403-408. doi: 10.14075/j.jgg.2023.04.013
      杨婷, 王世广, 房立华, 等, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
      张进江, 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649. doi: 10.12097/gbc.200706111
      张旭, 洪顺英, 董彦芳, 等, 2025. 2025年1月7日定日MW7.1地震同震形变与断层滑动分布. 地球科学, 50(5): 1709-1720. doi: 10.3799/dqkx.2025.072
    • 加载中
    计量
    • 文章访问数:  24
    • HTML全文浏览量:  0
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-01

    目录

      /

      返回文章
      返回