|
Dou, J., Yunus, A.P., Bui, D.T., et al., 2019. Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 662: 332-346. https://doi.org/10.1016/j.scitotenv.2019.01.221. |
|
Wang, Q.Y., Tang, H.M., An, P.J., et al., 2024. Insight into the Permeability and Microstructure Evolution Mechanism of the Sliding Zone Soil: A Case Study from the Huangtupo Landslide, Three Gorges Reservoir, China[J]. Journal of Earth Science, 35: 941-954. https://doi.org/10.1007/s12583-023-1828-0. |
|
Yang, Y.C., Dou, J., Merghadi, A., et al., 2024. Advanced Prediction of Landslide Deformation Through Temporal Fusion Transformer and Multivariate Time-Series Clustering of InSAR: Insights from the Badui Region, Eastern Tibet[J]. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-19. doi: 10.1109/TGRS.2024.3504241. |
|
何雨健,窦杰,王协康,等,2024. 国内外免像控无人机航测软件在数字滑坡中的应用效果对比--以三峡库区黄土坡滑坡为例[J].中国地质灾害与防治学报, (05): 160-173. |
|
唐辉明,李长冬,胡伟,等,2022. 重大滑坡启滑的物理机制是什么[J]? 地球科学, 47(10): 3902-3903. |
|
许强,董秀军,朱星,等, 2023. 基于实景三维的天-空-地-内滑坡协同观测[J]. 工程地质学报, 31(03): 706-717. |
|
窦杰,向子林,许强,等,2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 48(05): 1657-1674. |
|
Dou, J., Yunus, A.P., Bui, D.T., et al., 2020. Improved Landslide Assessment Using Support Vector Machine with Bagging, Boosting, and Stacking Ensemble Machine Learning Framework in a Mountainous Watershed, Japan[J]. Landslides, 17(3): 641-658. https://doi.org/10.1007/s10346-019-01286-5. |
|
殷跃平,高少华,2024. 高位远程地质灾害研究:回顾与展望[J].中国地质灾害与防治学报, (01): 1-18. |
|
张世殊,李青春,黎昊,等,2025. 融合多源遥感数据和改进后Mask R-CNN深度学习模型的复杂高原地形区冰湖智能识别[J]. 地球科学,50(08): 3132-3143. |
|
Baghbani, A., Choudhury, T., Costa, S., et al., 2022. Application of Artificial Intelligence in Geotechnical Engineering: A State-of-the-art Review[J]. Earth-Science Reviews, 228: 103991. https://doi.org/10.1016/j.earscirev.2022.103991. |
|
范荣双,陈洋,徐启恒,等,2019. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 48(01): 34-41. |
|
Dong, A.N., Dou, J., Li, C.D., et al., 2024. Accelerating Cross-Scene Co-Seismic Landslide Detection Through Progressive Transfer Learning and Lightweight Deep Learning Strategies[J]. IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-13, 2024, Art no. 4410213, doi: 10.1109/TGRS.2024.3424680. |
|
巨袁臻,许强,金时超,等,2020. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 45(11): 1747-55. (in Chinese with English abstract) |
|
Cheng, L.B., Li, J., Duan, P., et al., 2021. A Small Attentional YOLO Model for Landslide Detection from Satellite Remote Sensing Images[J]. Landslides, 18(8): 2751-2765. https://doi.org/10.1007/s10346-021-01694-6. |
|
毛佳琪,何敬,刘刚,等,2023. 基于改进的DeepLabV3+算法滑坡识别[J]. 自然灾害学报, 32(02): 227-34. |
|
Yang, Z.Q., Xu, C., 2022. Efficient Detection of Earthquake-Triggered Landslides Based on U-Net plus: An Example of the 2018 Hokkaido Eastern Iburi (Japan) Mw=6.6 Earthquake[J]. Remote Sensing, 14(12): 2826. https://doi.org/10.3390/rs14122826. |
|
Liu, X.R., Peng, Y.X., Lu, Z.L., et al., 2023. Feature-Fusion Segmentation Network for Landslide Detection Using High-Resolution Remote Sensing Images and Digital Elevation Model Data[J]. IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-13, 2024, Art no. 4410213, doi: 10.1109/TGRS.2024.3424680. |
|
Guo, Z.Z., Zeng, T.R., Zhang, Y.H., et al., 2025. A Novel Hybrid Model Integrating High Resolution Remote Sensing and Stacking Ensemble Techniques for Landslide Susceptibility Mapping: Application to Event-Based Landslide Inventory[J]. Geomorphology, Volume 486, 109886, ISSN 0169-555X, https://doi.org/10.1016/j.geomorph.2025.109886. |
|
Dou, J., Xing, K., Wang, L.Z., et al., 2025. Air-Space-Ground Synergistic Observations for Rapid Post-Seismic Disaster Assessment of 2025 Ms6.8 Xigazê Earthquake, Xizang[J]. Journal of Earth Science, 36: 1605-1622. https://doi.org/10.1007/s12583-025-0160-2. |
|
邢珂,黎昊,张乐乐,等,2025. 2025年西藏定日MS6.8地震地表破裂与震害特征分析[J]. 安全与环境工程, 32(02): 20-30. DOI: 10.13578/j.cnki.issn.1671-1556.20250133. |
|
Xing, K., Li, H., Zhang, L.L., et al., 2025. Analysis of Surface Rupture and Seismic Damage Characteristics of 2025 Dingri MS 6.8 Earthquake in Xizang[J]. Safety and Environmental Engineering, 32(02): 20-30. |
|
Chen, H., et al., 2024. A Multi-Input Channel U-Net Landslide Detection Method Fusing SAR Multisource Remote Sensing Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 1215-1232, 2024, doi: 10.1109/JSTARS.2023.3339294. |
|
Yang, Y.H., Miao, Z.L, Zhang, H., et al., 2024. Lightweight Attention-Guided YOLO With Level Set Layer for Landslide Detection From Optical Satellite Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. PP. 1-19. 10.1109/JSTARS.2024.3351277. |
|
Xiang, X.Y., Gong, W.P., Li, S.L., et al., 2024. TCNet: Multiscale Fusion of Transformer and CNN for Semantic Segmentation of Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. PP. 1-14. 10.1109/JSTARS.2024.3349625. |
|
Xu, Q., Ouyang, C.J., Jiang, T.H., et al., 2022. MFFENet and ADANet: a Robust Deep Transfer Learning Method and Its Application in High Precision and Fast Cross-Scene Recognition of Earthquake-induced Landslides[J]. Landslides, 19: 1617-1647. https://doi.org/10.1007/s10346-022-01847-1. |
|
Woo, S., Park, J., Lee, J.Y., et al., 2018. CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science(), vol 11211. Springer, Cham. https://doi.org/10.1007/978-3-030-01234-2_1. |
|
Osanai, N., Yamada, T., Hayashi, S., et al., 2019. Characteristics of Landslides Caused by the 2018 Hokkaido Eastern Iburi Earthquake[J]. Landslides, 16: 1517-1528. https://doi.org/10.1007/s10346-019-01206-7. |
|
邢珂,窦杰,陈能成,等,2025. 基于光学-LiDAR协同遥感及三维精细建模的滑坡特征解译与稳定性评价[J].自然灾害学报, (03):119-132. |
|
Wang, X.M., Yin, J., Luo, M.H., et al., 2023. Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules[J]. Journal of Earth Science, 34: 1596-1615. https://doi.org/10.1007/s12583-021-1505-0. |
|
Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci. 2022, 12, 8972. https://doi.org/10.3390/app12188972. |
|
Zhang, Z.X., Liu, Q.J., Wang, Y.H., 2018. Road Extraction by Deep Residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 15(5): 749-753. doi: 10.1109/LGRS.2018.2802944. |
|
Wang, H.H, Liu, J., Zeng, S.K, et al., 2024. A Novel Landslide Identification Method for Multi-scale and Complex Background Region Based on Multi-model Fusion: YOLO + U-Net[J]. Landslides, 21: 901-917. https://doi.org/10.1007/s10346-023-02184-7. |
|
Wu, Z.B., Li, H., Yuan, S.X., et al., 2023. Mask R-CNN–Based Landslide Hazard Identification for 22.6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China[J]. Remote Sensing, 15(20): 4898. https://doi.org/10.3390/rs15204898. |
|
Long, J., Shelhamer, E., Darrell, T., 2015. Fully Convolutional Networks for Semantic Segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 3431-3440, doi: 10.1109/CVPR.2015.7298965. |
|
Chen, L.C., Papandreou, G., Schroff, F., et al., 2017. Rethinking Atrous Convolution for Semantic Image Segmentation. 10.48550/arXiv.1706.05587. |
|
Ronneberger, O., Fischer, P., Brox, T. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28. |
|
Howard, A., Sandler, M., Chu, G., et al., 2019. Searching for MobileNetV3[J].IEEE, 2020.DOI: 10.1109/ICCV.2019.00140. |
|
Selvaraju, R.R., Cogswell, M., Das, A., et al., 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 618-626, doi: 10.1109/ICCV.2017.74. |
|
Guo, Z.Z., Cheng, M.C., Wang, Y.G, et al., 2025. Landslide hazard prediction under an extreme rainfall scenario by considering multiple timescale rainfalls and effective recharge. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1–29. https://doi.org/10.1080/17499518.2025.2570863. |
| [2022] |
年中国生态环境状况公报(摘录)[J]. 环境保护, 2023, 51(Z2): 64-81. |