• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陈坤, 李萌, 王鹏, 李效恋, 朱珺洁, 2025. 基于RC-Transformer的微地震背景噪声压制方法. 地球科学. doi: 10.3799/dqkx.2025.257
    引用本文: 陈坤, 李萌, 王鹏, 李效恋, 朱珺洁, 2025. 基于RC-Transformer的微地震背景噪声压制方法. 地球科学. doi: 10.3799/dqkx.2025.257
    Chen Kun, Li Meng, Wang Peng, Li Xiaolian, Zhu Junjie, 2025. Microseismic background noise suppression based on RC-Transformer. Earth Science. doi: 10.3799/dqkx.2025.257
    Citation: Chen Kun, Li Meng, Wang Peng, Li Xiaolian, Zhu Junjie, 2025. Microseismic background noise suppression based on RC-Transformer. Earth Science. doi: 10.3799/dqkx.2025.257

    基于RC-Transformer的微地震背景噪声压制方法

    doi: 10.3799/dqkx.2025.257
    基金项目: 

    陕西省自然科学基础研究计划(2023-JC-YB-220)

    天地科技股份有限公司科技创新创业资金专项项目(2024-TD-ZD010-02)

    详细信息
      作者简介:

      陈坤(2000-),男,西安石油大学硕士研究生,主要从事深度学习技术与地球物理信号智能处理研究,ORCID:0009-0005-9398-9755,E-mail:980270203@qq.com

      通讯作者:

      王鹏(1990-),中煤科工开采研究院有限公司,男,陕西宝鸡人,助理研究员,博士研究生,主要从事矿井物探、水力压裂监测等方面的研究工作,E-mail:3867067848@qq.com

    • 中图分类号: P631.4

    Microseismic background noise suppression based on RC-Transformer

    • 摘要: 在微地震信号处理领域,复杂噪声的干扰严重影响有效事件的准确识别,增加了P波与S波初至拾取的不确定性。为了有效提升微地震信号质量,增强初至拾取的可靠性,本文提出一种基于RC-Transformer的微地震噪声压制方法。该方法基于Transformer深度学习框架,采用自注意力机制捕捉全局信号特征,同时结合残差卷积网络增强局部噪声的抑制能力,从而高效地降低复杂背景噪声,显著恢复有效信号的幅度。三维合成微地震数据、储气库监测与煤层顶板压裂实测微地震数据测试表明,本文的方法能够有效压制背景噪声、恢复微地震有效事件的波形幅度。与传统算法相比,RC-Transformer 大幅提升微地震信号信噪比和初至拾取准确性,推理效率高,为复杂地质环境下的噪声压制与检测提供高效解决方案。

       

    • Bonar , D., Sacchi , M., 2012.Denoising Seismic Data using the Nonlocal Means Algorithm.Geophysics,77(1):A5-A8.https://doi.org/10.1190/geo2011-0235.1
      Bose , S., De , A., Chakrabarti , I., 2020. Framework for Automated Earthquake Event Detection Based on Denoising by Adaptive Filter.IEEE Transactions on Circuits and Systems I: Regular Papers,67(9):3070-3083.10.1109/TCSI.2020.2984960
      Cao , L., Lei , Z., Zhou ,Z., et al., 2023.An Underwater Acoustic Signal Denoising Method for Broadband Interference from Underwater Platforms Based on the Deep Neural Network Model. 2023 6th International Conference on Information Communication and Signal Processing(ICICSP).IEEE,2023:439-444.10.1109/ICICSP59554.2023.10390690
      Chen , K., Li , M., Li , X., et al ., 2025.Enhancing Microseismic Event Detection with TransUNet: A Deep Learning Approach for Simultaneous Pickings of P-Wave and S-Wave First Arrivals.Artificial Intelligence in Geosciences,100129.https://doi.org/10.1016/j.aiig.2025.100129
      Chen , X.Q., Zhu , J.J., Zhu , Q.L., et al ., 2025. Fine Processing and Analysis of Multibeam Bathymetric Data Outlier from Surveying and Mapping in the South China Sea.Earth Science, 50(2):535-550.10.3799/dqkx.2023.207.(in Chinese with English abstract).
      Dong , X.T., Zhong , T., Wang ,H.Z., et al ., 2022.The Denoising of Desert Seismic Data Acquired from Tarim Basin Based on Convolutional Adversarial Denoising Network.Chinese Journal of Geophysics (in Chinese),65(7):2661-2672.10.6038/cjg2022P0279.(in Chinese with English abstract).
      Feng , Y.J., Chen , X.H,.2023.Seismic Data Reconstruction Based on Partial Convolution and Attentional Mechanism Adversarial Network Model.Oil Geophysical Prospecting,58(1): 21-30.10.13810/j.cnki.issn.1000-7210.2023.01.002.(in Chinese with English abstract).
      Dou,J., Tang , H.M., Dong , A.N., 2025. Intelligent Recognition and Feature Analysis of Seismic Surface Cracks Integrating Multi⁃Scale Features and Attention Mechanism: A Case Study of the 2025 Dingri, Xizang MS6.8 Earthquake.Earth Science, 50(5): 1744-1758.10.3799/dqkx.2025.058.
      Li , M., Shen, H., Guo Y., et al ., 2021.Locating Microseismic Events using Multiplicative Time Reversal Imaging Based on Decoupled Wavefields in 2D VTI Media: Theoretical and Synthetic Cases Studies.Journal of Petroleum Science and Engineering,202:108547.https://doi.org/10.1016/j.petrol.2021.108547
      Li , M., Yang , R.J., Liu, B ., et al ., 2023.Application of Time Reversed Imaging in Downhole Microseismic Monitoring for Fast SAGD Start–Up Enhancement of Heavy Oil Reservoir in Fengcheng Oil Field.Northwestern Geology,56(5):111-119.10.12401/j.nwg.2023123.(in Chinese with English abstract).
      Li , C., Saad , O.M., Chen , Y., 2025.Unsupervised Deep Learning for Off-the-grid Seismic Reconstruction and Denoising.Geophysics,2025: 90(3):V241–V254.https://doi.org/10.1190/geo2024-0189.1
      Li , X.G., Zhou , Y.J., Dong , H.L., et al., 2023.Seismic Resolution Improvement Method Based on Dual-attention U-Net Network.Oil Geophysical Prospecting, 58(3):507-517.10.13810/j.cnki.issn.1000-7210.2023.03.003.(in Chinese with English abstract).
      Liang , J., Cao , J., Sun , G., et al., 2021. Swinir: Image Restoration using Swin Transformer.Proceedings of the IEEE/CVF international conference on computer vision,1833-1844.https://doi.org/10.48550 /arXiv.2108.10257
      Luo , R.Z., Li , Y.Y., 2020. Random Seismic Noise Attenuation Based on RUnet Convolutional Neural Network.Geophysical Prospecting for Petroleum.59(1):51-59.10.3969/j.issn.1000-1441.2020.01.006.(in Chinese with English abstract).
      Malikov , R., Yusubova , T., Shahsenov , I., 2024.Deep Learning Approach for Denoising and Resolution Enhancement of Poststack Seismic Data.SEG International Exposition and Annual Meeting.SEG,2024:SEG-2024-4090529.https://doi.org/10.1190/image2024-4090529.1
      Oboué , Y.A.S.I., Chen , Y., Guo , Z., et al.2025. Leveraging Overfitting for Good-two-step Deep Image Prior Model for Seismic Denoising.Geophysics,90(3):1-67.https://doi.org/10.1190/geo2024-0236.1
      Pham , N., Merzlikin , D., Fomel , S., et al ., 2020.Passive Seismic Signal Denoising using Convolutional Neural NetworkSEG International Exposition and Annual Meeting. SEG:D041S100R006.https://doi.org/10.1190/segam2020-3427266.1
      Saad , O.M., Chen , Y., Savvaidis , A., et al ., 2022. Unsupervised Deep Learning for Single-channel Earthquake Data Denoising and Its Applications in Event Detection and Fully Automatic Location.IEEE Transactions on Geoscience and Remote Sensing.60: 1-10.10.1109/TGRS.2022.3209932
      Saad , O.M., Helmy ,I., Chen , Y., 2024.Unsupervised Deep-learning Framework for 5D Seismic Denoising and Interpolation.Geophysics,89(4): V319-V330.https://doi.org/10.1190/geo2023-0637.1
      Shao , J., Sun ,C.Y., Tang , J., et al ., 2016.Micro-seismic Data Denoising Based on Sparse Representations Over Learned Dictionary in the Wavelet Domain.Oil Geophysical Prospecting,51(2):254-260.10.13810/j.cnki.issn.1000-7210.2016.02.007.(in Chinese with English abstract).
      Shen , H., Zhao , Z.Q., Zhang , W., 2023.Adaptive Dynamic Filtering Network for Image DenoisingProceedings of the AAAI Conference on Artificial Intelligence.37(2):2227-2235.https://doi.org/10.1609/aaai.v37i2.25317
      Sun , C.Y., Shao , J., Lan , Y., et al ., 2016.Seismic Random Noise Suppression Based on Independent Component Analysis Basis Functions.Geophysical Prospecting for Petroleum,55(2):196-204.10.3969/j.issn.1000-1441.2016.02.005.(in Chinese with English abstract).
      Sun , L., Zheng , X., Ding , L., et al.2023.Automatic Identification of Strong Energy Noise in Seismic Data Based on U-Net.IEEE Transactions on Geoscience and Remote Sensing.61: 1-11.10.1109/TGRS.2023.3321898
      Xu , Y.K., Liu , Z.M., Xue , Y.Y., et al ., 2022.Suppression of Seismic Random Noise using Dual-channel Convolutional Neural Network.Oil Geophysical Prospecting,57(4):747-756.10.13810/j.cnki.issn.1000-7210.2022.04.001.(in Chinese with English abstract).
      Xu , Y.K., Wang , D., Li , Y.Z., et al ., 2024.Seismic Random Noise Suppression Method by Adaptive Dynamic Filtering Network.Oil Geophysical Prospecting,59(4):736-744.10.13810/j.cnki.issn.1000-7210.2024.04.012.(in Chinese with English abstract).
      Y , C.Q ., Zhou , Y.T., He, H., et al .,2021.Global Context and Attention-based Deep Convolutional Neural Network for Seismic Data Denoising.Geophysical Prospecting for Petroleum.60(5):751-762.10.3969/j.issn.1000-1441.2021.05.006.(in Chinese with English abstract).
      Yi , X., Luo , R.Z., 2025.Research on an Improved Swin-transformer Method for Seismic Data Noise Suppression.Software Guide, 24(01):35-42.10.11907/rjdk.241794.(in Chinese with English abstract).
      Yin , X., Liu , Q., Huang , X., et al, 2022.Development and Application of a Novel Hybrid Ceemdan-lwt Denoising Approach in Microseismic Monitoring.Pure Appl. Geophysics.179,3279–3294.https://doi.org/10.1007/s00024-022-03115-8
      Yu , R.S., Zhang , Y., Zhou , C., 2020.Deep Convolutional Generative Adversarial Network for Random Noise Attenuation in Rayleigh Wave Signal.Progress in Geophysics.35(6): 2276-2283.10.6038/pg2020EE0060.(in Chinese with English abstract).
      Zhang , S., Li , M., Cui , G.Z., et al., 2025. Simultaneous Inversion Method for Microseismic Source Location and Source Wavelet Based on Sparse Regularization FWI and mOWL-QN.Petroleum Geophysical Exploration,60(05):1146-1159.https://doi.org/10.13810/j.cnki.issn.1000-7210.20240309.(in Chinese with English abstract).
      Zhang , X.P., 2010.Technical Difficulty Analysis and Countermeasures for Field Data Gathering of Seismic Exploration for Coal in Gobi District.Northwestern Geology,43(2): 44-47.10.3969/j.issn.1009-6248.2010.02.007.(in Chinese with English abstract).
      Zhang , Y., Li , X.Y., Wang , B., et al ., 2021.Random Noise Suppression of Seismic Data Based on Joint Deep Learning.Oil Geophysical Prospecting.56(1): 9-25,56.10.13810/j.cnki.issn.1000-7210.2021.01.002.(in Chinese with English abstract).
      Zhang , Y., Zhang , Y.M., Dong , H.L., et al., 2024.An Integrated Method of Seismic Data Reconstruction and Denoising Based on Generative Adversarial Network.Oil Geophysical Prospecting,59(4):714-723.10.13810/j.cnki.issn.1000-7210.2024.04.008.(in Chinese with English abstract).
      Zhao , Z.C., Rao , Y., 2024.Seismic Random Noise Suppression Based on SP-DnCNN Neural Network.Chinese Journal of Geophysics (in Chinese),67(10):3841-3850.10.6038/cjg2023R0483.(in Chinese with English abstract).
      Zhong , T., Chen , Y., Dong , X.T., et al .,2022.Research on Random Noise Attenuation Method for Seismic Data From Deserts Based on DBBCNN.Oil Geophysical Prospecting. 57(2):268-278.10.13810/j.cnki.issn.1000-7210.2022.02.003.(in Chinese with English abstract).
      Zhou , D.H., Zhou , J.K., Xia , T.X., et al ., 2023.Suppression of High Frequency Random Noise in Seismic Data by Self-adaptive Threshold of Three Parameter Wavelet Transform.Chinese Journal of Geophysics (in Chinese),66(5):2095-2111.10.6038/cjg2022P0862.(in Chinese with English abstract).
      Zhou , H.L., 2006.Research and Application of Seismic Signal Denoising Method Based on Wavelet Transform.Chengdu University of Technology.(in Chinese with English abstract).
      Zhu , W., Mousavi , S.M., Beroza , G.C., 2019.Seismic Signal Denoising and Decomposition using Deep Neural Networks. IEEE Transactions on Geoscience and Remote Sensing,57(11):9476-9488.10.1109/TGRS.2019.2926772
      陈星铨,朱俊江,朱庆龙,等,2025.南海多波束测量中水深数据异常的精细处理与成因分析.地球科学, 50(2): 535-550.
      董新桐,钟铁,王洪洲,等,2022.基于卷积对抗降噪网络的塔里木盆地沙漠地震资料消噪方法研究.地球物理学报,65(7): 2661-2672.
      冯永基,陈学华,2023.融合部分卷积和注意力机制对抗网络模型的地震数据重建.石油地球物理勘探,58(1): 21-30.
      窦杰, 唐辉明, 董傲男, 等, 2025. 融合多尺度特征与注意力机制的地震地表裂缝智能识别与特征分析: 以2025年西藏定日MS6.8地震为例. 地球科学, 50(5): 1744-1758.
      李萌,杨若姣,刘斌 ,等,2023.井中微地震逆时干涉震源定位在风城重油油田SAGD快速预热中的应用. 西北地质, 56(5): 111-119.
      李学贵,周英杰,董宏丽,等,2023.基于双注意力U-Net网络的提高地震分辨率方法.石油地球物理勘探,58(3):507-517.
      罗仁泽,李阳阳,2020.一种基于RUnet卷积神经网络的地震资料随机噪声压制方法.石油物探.59(1): 51-59.
      邵婕,孙成禹,唐杰,等,2016.基于字典训练的小波域稀疏表示微地震去噪方法.石油地球物理勘探, 51(2): 254-260.
      孙成禹,邵婕,蓝阳,唐杰,2016.基于独立分量分析基的地震随机噪声压制.石油物探,55(2):196-204.
      徐彦凯,刘曾梅,薛亚茹,等,2022.应用双通道卷积神经网络的地震随机噪声压制方法.石油地球物理勘探, 57(4): 747-756.
      徐彦凯,王迪,李宜真,等,2024.自适应动态滤波网络地震随机噪声压制方法.石油地球物理勘探, 59(4): 736-744.
      杨翠倩,周亚同,何昊,等,2021.基于全局上下文和注意力机制深度卷积神经网络的地震数据去噪.石油物探.60(5): 751-762.
      易玺,罗仁泽,2025.改进Swin-Transformer的地震数据噪声压制方法研究.软件导刊.24(01):35-42.
      俞若水,张勇,周创,2020.基于深度卷积生成对抗网络的瑞雷波信号随机噪声去除.地球物理学进展.35(6): 2276-2283.
      张申,李萌,崔广智,等,2025.基于稀疏正则化FWI和mOWL-QN的微地震震源位置与震源子波同时反演方法.石油地球物理勘探,60(05):1146-1159
      张向鹏,2010.戈壁地区煤田野外地震勘探资料采集的技术难点分析与对策.西北地质, 43(2): 44-47.
      张岩,李新月,王斌,等,2021.基于联合深度学习的地震数据随机噪声压制.石油地球物理勘探.56(1): 9-25, 56.
      张岩,张一鸣,董宏丽,等,2024.应用生成对抗网络的地震数据重建和去噪一体化方法. 石油地球物理勘探, 59(4): 714-723 .
      赵振聪,饶莹.2024.基于结构保护去噪神经网络的地震数据随机噪声压制.地球物理学报, 67(10): 3841-3850.
      钟铁,陈云,董新桐,等,2022.基于DBBCNN的沙漠区地震资料随机噪声衰减方法.石油地球物理勘探.57(2): 268-278.
      周东红,周建科,夏同星,等,2023.三参数小波变换自适应阈值压制地震数据高频随机噪声.地球物理学报, 66(5): 2095-2111.
      周怀来,2006.基于小波变换的地震信号去噪方法研究与应用.成都理工大学(博士学位论文).
    • 加载中
    计量
    • 文章访问数:  10
    • HTML全文浏览量:  0
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-05-30
    • 网络出版日期:  2025-12-03

    目录

      /

      返回文章
      返回