|
Benson T R., Coble M A., Rytuba J J., et al., Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J].Nature communications, 2017, 8(1): 270. |
|
Cardoso-Fernandes J., Teodoro A C., Lima A., Remote sensing data in lithium (Li) exploration:A new approach for the detection of Li-bearing pegmatites[J].International Journal of Applied Earth Ob-servation and Geoinformation, 2019, 76: 10-25. |
|
Ding L, Chen B, Zhu Y., et al. Mineral prediction based on prototype learning[J].Computers & Geosciences, 2024, 184: 105540. |
|
Du, X.C., Lou, D.B., Xu, L.G., et al., Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J].Remote Sensing for Natural Resources, 2023, 35(4): 53-60(in Chinese with English abstract). doi: 10.6046/zrzyyg.2022280 |
|
Guan Q, Ren S, Chen L, et al., Recognizing multivariate geochemical anomalies related to mineralization by using deep unsupervised graph learning[J].Natural Resources Research, 2022, 31(5): 2225-2245. |
|
Ioffe S, Szegedy C., Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456. |
|
Jiang, G, Zhou K.F., Wang Y.L., et al., Identification of lithium-beryllium granitic pegmatites based on deep learning[J].Earth Science Frontiers, 2023, 30(5): 185-196(in Chinese with English abstract). doi: 10.13745/j.esf.sf.2023.5.20 |
|
Jiang Q, Dai J, Wang D, et al., Application of optical remote sensing to identifying granite pegmatite lithium deposits[J].Mineral Deposits, 2021, 40(04): 793-804(in Chinese with English abstract). doi: https://doi.org/10.16111/j.0258-7106.2021.04.009 |
|
Jin M.S., Gao Y.B., Li K, et al., Remote Sensing Prospecting Method for Pegmatite Type Rare Metal Deposit--Taking Dahongliutan Area in Western Kunlun for Example[J].Northwestern Geology, 2019, 52(4): 222-231(in Chinese with English abstract).doi: 10.3969/j.issn.1009-6248.0219.04.017 |
|
Kipf T.N., Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016. |
|
Liang C, Xiao B, Cheng B., GCN-based semantic segmentation method for mine information extraction in GAOFEN-1 imagery[C]//2021IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021: 3432-3435. |
|
Li K, Gao Y.B., Teng J.X., et al., Metallogenic Geological Characteristics,Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area,Hetian County,Xinjiang[J].Northwestern Geology, 2019, 52(4): 206-221(in Chinese with English abstract). doi: https://doi.org/10.3969/j.issn.1009-6248.2019.04.016 |
|
Lu H, Qiao D, Li Y, et al., Fusion of China ZY-1 02D hyperspectral data and multispectral data: which methods should be used?[J].Remote Sensing, 2021, 13(12): 2354. |
|
Pathak A R, Pandey M, Rautaray S., Application of deep learning for object detection[J].Procedia computer science, 2018, 132: 1706-1717. |
|
Pan M, Tang Y, Xiao R.Q., et al,. The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District[J].Acta Geologica Sichuan, 2016, 36(3):422-425,430(in Chinese).doi: https://doi.org/10.3969/j.issn.1006-0995.2016.03.016 |
|
Ren G.L., Kong H.L., Zhao K.D., et al., Spectral Characteristics and Prospecting Implications of Lithium Deposits in Dahongliutan Area,Karakoram,Xinjiang[J].Northwestern Geology, 2022, 55(04): 103-114(in Chinese with English abstract).doi: 10.19751/j.cnki-1149/p.2022.04.009 |
|
Tu Q.j., Han Q., Li P., et al., Basic characteristics and exploration progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J].Acta Geologica Sinica, 2019, 93(11): 2862-2873(in Chinese with English abstract). doi: https://doi.org/10.3969/j.issn.0001-5717.2019.11.011 |
|
Tu Q.J., Li J.K., Wang G, et al., Mineralization comparisons of the major pegmatite type spodumene deposits and their prospecting potential in West China[J].Geological Survey Of China, 6(6):36-47(in Chinese). doi:10.19388/j.zgdzdc. 2019.06.05 |
|
Wang H.Y., Research on pegmatite ddike information extraction from remote sensing images bbased on deep semantic segmentation[D]. China University of Geosciences, Beijing, 2021 |
|
Wang H, Huang L, Ma H.d., et al., Geological characteristics and metallogenic regularity of lithium deposits in Dahongliutan-Bailongshan area,West Kunlun,China[J].Acta Petrologica Sinica, 2023, 39(07): 1931-1949(in Chinese with English abstract) . doi: https://doi.org/10.18654/1000-0569/2023.07.04 |
|
Wu X, Sahoo D, Hoi S C H., Recent advances in deep learning for object detection[J].Neurocomputing, 2020, 396: 39-64. |
|
Xiong X, Li J.K., Yan Q.G., et al., The ore-forming mechanism and geological indicators of the Zhawulong pegmatite-type rare-metal deposit in Sichuan[J].Acta Petrologica Sinica, 40(9): 2863-2877(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.09.15 |
|
Xu P, Jia L, Bao H.J., et al., A study on visible shortwave infrared and thermal infrared spectral characteristics of beryl: implications to the beryllium resource exploration using remote sensing technology[J].Acta Mineralogica Sinica, 1-9(in Chinese with English abstract). doi: https://doi.org/10.3724/j.1000-4734.2025.45.001. |
|
Zhang S, Ju N, Wu Y, et al., Distribution characteristics, main types and exploration and development status of beryllium deposit[J].Geology In China, 2023, CSCD(02): 410-424(in Chinese with English abstract). doi: https://doi.org/10.12029/gc20210723002 |
|
Zhao Z Q, Zheng P, Xu S, et al., Object detection with deep learning: A review[J].IEEE transactions on neural networks and learning systems, 2019, 30(11): 3212-3232. |
|
Zuo R, Xu Y., A physically constrained hybrid deep learning model to mine a geochemical data cube in support of mineral exploration[J].Computers & Geosciences, 2024, 182: 105490. |
|
Zuo R, Xu Y., Graph deep learning model for mapping mineral prospectivity[J].Mathematical Geosciences, 2023, 55(1): 1-21. |
|
杜晓川,娄德波,徐林刚,等. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60. |
|
蒋果,周可法,王金林. 基于深度学习的花岗伟晶岩型锂铍矿物识别研究[J]. 地学前缘, 2023, 30(5): 185-196. |
|
蒋琪,代晶晶,王登红,等. 光学遥感在识别花岗伟晶岩型锂矿床中的应用[J]. 矿床地质, 2021, 40(04): 793-804. |
|
金谋顺,高永宝,李侃,等. 伟晶岩型稀有金属矿的遥感找矿方法---以西昆仑大红柳滩地区为例[J].西北地质,2019,52 (4):222-231. |
|
李侃,高永宝,腾家欣,等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(04): 206-221. |
|
潘蒙,唐屹,肖瑞卿,等. 甲基卡新3号超大型锂矿脉找矿方法[J]. 四川地质学报,2016,36(3):422-425,430. |
|
任广利,孔会磊,赵凯东,等. 新疆喀喇昆仑大红柳滩一带锂矿光谱特征及其找矿指示意义[J]. 西北地质, 2022, 55(04): 103-114. |
|
涂其军,韩琼,李平,等. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 2019, 93(11): 2862-2873. |
|
涂其军,李建康,王刚,马宏超. 2019. 中国西部主要伟晶岩型锂辉石矿床成矿作用对比及找矿前景[J].中国地质调查, 6(6):36-47. |
|
王海宇. 基于深度语义分割的遥感影像伟晶岩脉信息提取研究[J]. 中国地质大学(北京), 2021. |
|
王核,黄亮,马华东,等. 西昆仑大红柳滩-白龙山矿集区锂矿成矿特征与成矿规律初探[J]. 岩石学报, 2023, 39(07): 1931-1949. |
|
熊欣,李健康,严清高. 四川扎乌龙伟晶岩型稀有金属矿床的成矿机制及找矿标志[J]. 岩石学报, 2024, 40(9): 2863-2877. |
|
徐萍,贾磊,包虹剑,等. 绿柱石可见-短波红外与热红外光谱特征研究及其对铍资源遥感勘查的启示[J]. 矿物学报, 2025. |
|
张森,鞠楠,伍月,等. 铍矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2023, 50(2): 410–424. |