• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陈志行, 王正海, 卜浩坚, 田雨欣, 2025. 基于融合地质信息图卷积神经网络的高光谱伟晶岩锂铍识别. 地球科学. doi: 10.3799/dqkx.2025.262
    引用本文: 陈志行, 王正海, 卜浩坚, 田雨欣, 2025. 基于融合地质信息图卷积神经网络的高光谱伟晶岩锂铍识别. 地球科学. doi: 10.3799/dqkx.2025.262
    Chen Zhixing, Wang Zhenghai, Bu Haojian, Tian Yuxin, 2025. A Geology-Informed Graph Convolutional Network for Identifying Lithium- and Beryllium-Rich Pegmatites from Hyperspectral Imagery. Earth Science. doi: 10.3799/dqkx.2025.262
    Citation: Chen Zhixing, Wang Zhenghai, Bu Haojian, Tian Yuxin, 2025. A Geology-Informed Graph Convolutional Network for Identifying Lithium- and Beryllium-Rich Pegmatites from Hyperspectral Imagery. Earth Science. doi: 10.3799/dqkx.2025.262

    基于融合地质信息图卷积神经网络的高光谱伟晶岩锂铍识别

    doi: 10.3799/dqkx.2025.262
    基金项目: 

    国家自然科学基金重点项目(No.42430111)

    详细信息
      作者简介:

      陈志行(2001-),男,湖北省襄阳人,硕士研究生,遥感地质方向,E-mail:chenzhx226@mail2.sysu.edu.cn

      通讯作者:

      王正海(1971-),安徽怀宁人,博士,副教授,博士研究生导师,主要从事资源环境效应遥感探测机理与方法.Emall:wzhengh@mal.sysu.edu.cn

    • 中图分类号: P618

    A Geology-Informed Graph Convolutional Network for Identifying Lithium- and Beryllium-Rich Pegmatites from Hyperspectral Imagery

    • 摘要: 高光谱遥感影像凭借其丰富的波段信息,能够有效提取与识别矿物蚀变特征,是遥感找矿的重要工具,特别是与机器学习相结合的方法,近年来在成矿预测领域取得了众多成功应用。然而,传统遥感找矿方法其分析多局限于高光谱数据本身,缺乏与地质信息的协同分析,这制约了找矿效果的进一步提升。为了解决传统高光谱找矿缺少地质信息的不足,本文将传统的高光谱数据与岩体、断层位置这类地质信息相结合,构建高光谱—地质信息39通道综合数据集,首先对图卷积神经网络(GCN)模型进行改进,在网络中加入残差连接模块,对残差连接模块和卷积层进行批量化归一操作,提高训练效果。最后采用资源一号02D卫星(ZY-1 02D)高光谱数据在大红柳滩地区开展实验。结果表明,改进后的GCN模型对研究区内含矿花岗伟晶岩具有较高的识别精度。相比原始GCN网络、卷积神经网络模型以及支持向量机模型,准确率分别提高了7、22和27个百分点,实现了高光谱遥感影像中锂铍矿化花岗伟晶岩的高精度自动化预测。

       

    • Benson T R., Coble M A., Rytuba J J., et al., Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J].Nature communications, 2017, 8(1): 270.
      Cardoso-Fernandes J., Teodoro A C., Lima A., Remote sensing data in lithium (Li) exploration:A new approach for the detection of Li-bearing pegmatites[J].International Journal of Applied Earth Ob-servation and Geoinformation, 2019, 76: 10-25.
      Ding L, Chen B, Zhu Y., et al. Mineral prediction based on prototype learning[J].Computers & Geosciences, 2024, 184: 105540.
      Du, X.C., Lou, D.B., Xu, L.G., et al., Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J].Remote Sensing for Natural Resources, 2023, 35(4): 53-60(in Chinese with English abstract). doi: 10.6046/zrzyyg.2022280
      Guan Q, Ren S, Chen L, et al., Recognizing multivariate geochemical anomalies related to mineralization by using deep unsupervised graph learning[J].Natural Resources Research, 2022, 31(5): 2225-2245.
      Ioffe S, Szegedy C., Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456.
      Jiang, G, Zhou K.F., Wang Y.L., et al., Identification of lithium-beryllium granitic pegmatites based on deep learning[J].Earth Science Frontiers, 2023, 30(5): 185-196(in Chinese with English abstract). doi: 10.13745/j.esf.sf.2023.5.20
      Jiang Q, Dai J, Wang D, et al., Application of optical remote sensing to identifying granite pegmatite lithium deposits[J].Mineral Deposits, 2021, 40(04): 793-804(in Chinese with English abstract). doi: https://doi.org/10.16111/j.0258-7106.2021.04.009
      Jin M.S., Gao Y.B., Li K, et al., Remote Sensing Prospecting Method for Pegmatite Type Rare Metal Deposit--Taking Dahongliutan Area in Western Kunlun for Example[J].Northwestern Geology, 2019, 52(4): 222-231(in Chinese with English abstract).doi: 10.3969/j.issn.1009-6248.0219.04.017
      Kipf T.N., Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
      Liang C, Xiao B, Cheng B., GCN-based semantic segmentation method for mine information extraction in GAOFEN-1 imagery[C]//2021IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021: 3432-3435.
      Li K, Gao Y.B., Teng J.X., et al., Metallogenic Geological Characteristics,Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area,Hetian County,Xinjiang[J].Northwestern Geology, 2019, 52(4): 206-221(in Chinese with English abstract). doi: https://doi.org/10.3969/j.issn.1009-6248.2019.04.016
      Lu H, Qiao D, Li Y, et al., Fusion of China ZY-1 02D hyperspectral data and multispectral data: which methods should be used?[J].Remote Sensing, 2021, 13(12): 2354.
      Pathak A R, Pandey M, Rautaray S., Application of deep learning for object detection[J].Procedia computer science, 2018, 132: 1706-1717.
      Pan M, Tang Y, Xiao R.Q., et al,. The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District[J].Acta Geologica Sichuan, 2016, 36(3):422-425,430(in Chinese).doi: https://doi.org/10.3969/j.issn.1006-0995.2016.03.016
      Ren G.L., Kong H.L., Zhao K.D., et al., Spectral Characteristics and Prospecting Implications of Lithium Deposits in Dahongliutan Area,Karakoram,Xinjiang[J].Northwestern Geology, 2022, 55(04): 103-114(in Chinese with English abstract).doi: 10.19751/j.cnki-1149/p.2022.04.009
      Tu Q.j., Han Q., Li P., et al., Basic characteristics and exploration progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J].Acta Geologica Sinica, 2019, 93(11): 2862-2873(in Chinese with English abstract). doi: https://doi.org/10.3969/j.issn.0001-5717.2019.11.011
      Tu Q.J., Li J.K., Wang G, et al., Mineralization comparisons of the major pegmatite type spodumene deposits and their prospecting potential in West China[J].Geological Survey Of China, 6(6):36-47(in Chinese). doi:10.19388/j.zgdzdc. 2019.06.05
      Wang H.Y., Research on pegmatite ddike information extraction from remote sensing images bbased on deep semantic segmentation[D]. China University of Geosciences, Beijing, 2021
      Wang H, Huang L, Ma H.d., et al., Geological characteristics and metallogenic regularity of lithium deposits in Dahongliutan-Bailongshan area,West Kunlun,China[J].Acta Petrologica Sinica, 2023, 39(07): 1931-1949(in Chinese with English abstract) . doi: https://doi.org/10.18654/1000-0569/2023.07.04
      Wu X, Sahoo D, Hoi S C H., Recent advances in deep learning for object detection[J].Neurocomputing, 2020, 396: 39-64.
      Xiong X, Li J.K., Yan Q.G., et al., The ore-forming mechanism and geological indicators of the Zhawulong pegmatite-type rare-metal deposit in Sichuan[J].Acta Petrologica Sinica, 40(9): 2863-2877(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.09.15
      Xu P, Jia L, Bao H.J., et al., A study on visible shortwave infrared and thermal infrared spectral characteristics of beryl: implications to the beryllium resource exploration using remote sensing technology[J].Acta Mineralogica Sinica, 1-9(in Chinese with English abstract). doi: https://doi.org/10.3724/j.1000-4734.2025.45.001.
      Zhang S, Ju N, Wu Y, et al., Distribution characteristics, main types and exploration and development status of beryllium deposit[J].Geology In China, 2023, CSCD(02): 410-424(in Chinese with English abstract). doi: https://doi.org/10.12029/gc20210723002
      Zhao Z Q, Zheng P, Xu S, et al., Object detection with deep learning: A review[J].IEEE transactions on neural networks and learning systems, 2019, 30(11): 3212-3232.
      Zuo R, Xu Y., A physically constrained hybrid deep learning model to mine a geochemical data cube in support of mineral exploration[J].Computers & Geosciences, 2024, 182: 105490.
      Zuo R, Xu Y., Graph deep learning model for mapping mineral prospectivity[J].Mathematical Geosciences, 2023, 55(1): 1-21.
      杜晓川,娄德波,徐林刚,等. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
      蒋果,周可法,王金林. 基于深度学习的花岗伟晶岩型锂铍矿物识别研究[J]. 地学前缘, 2023, 30(5): 185-196.
      蒋琪,代晶晶,王登红,等. 光学遥感在识别花岗伟晶岩型锂矿床中的应用[J]. 矿床地质, 2021, 40(04): 793-804.
      金谋顺,高永宝,李侃,等. 伟晶岩型稀有金属矿的遥感找矿方法---以西昆仑大红柳滩地区为例[J].西北地质,2019,52 (4):222-231.
      李侃,高永宝,腾家欣,等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(04): 206-221.
      潘蒙,唐屹,肖瑞卿,等. 甲基卡新3号超大型锂矿脉找矿方法[J]. 四川地质学报,2016,36(3):422-425,430.
      任广利,孔会磊,赵凯东,等. 新疆喀喇昆仑大红柳滩一带锂矿光谱特征及其找矿指示意义[J]. 西北地质, 2022, 55(04): 103-114.
      涂其军,韩琼,李平,等. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 2019, 93(11): 2862-2873.
      涂其军,李建康,王刚,马宏超. 2019. 中国西部主要伟晶岩型锂辉石矿床成矿作用对比及找矿前景[J].中国地质调查, 6(6):36-47.
      王海宇. 基于深度语义分割的遥感影像伟晶岩脉信息提取研究[J]. 中国地质大学(北京), 2021.
      王核,黄亮,马华东,等. 西昆仑大红柳滩-白龙山矿集区锂矿成矿特征与成矿规律初探[J]. 岩石学报, 2023, 39(07): 1931-1949.
      熊欣,李健康,严清高. 四川扎乌龙伟晶岩型稀有金属矿床的成矿机制及找矿标志[J]. 岩石学报, 2024, 40(9): 2863-2877.
      徐萍,贾磊,包虹剑,等. 绿柱石可见-短波红外与热红外光谱特征研究及其对铍资源遥感勘查的启示[J]. 矿物学报, 2025.
      张森,鞠楠,伍月,等. 铍矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2023, 50(2): 410–424.
    • 加载中
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-10-15

    目录

      /

      返回文章
      返回