• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 35 Issue 1
    Jan.  2010
    Turn off MathJax
    Article Contents
    ZOU Jian-jun, SHI Xue-fa, LI Nai-sheng, LIU Ji-hua, ZHU Ai-mei, 2010. Early Diagenetic Processes of Redox Sensitive Elements in Yangtze Estuary. Earth Science, 35(1): 31-42. doi: 10.3799/dqkx.2010.004
    Citation: ZOU Jian-jun, SHI Xue-fa, LI Nai-sheng, LIU Ji-hua, ZHU Ai-mei, 2010. Early Diagenetic Processes of Redox Sensitive Elements in Yangtze Estuary. Earth Science, 35(1): 31-42. doi: 10.3799/dqkx.2010.004

    Early Diagenetic Processes of Redox Sensitive Elements in Yangtze Estuary

    doi: 10.3799/dqkx.2010.004
    • Received Date: 2009-05-10
    • Publish Date: 2010-01-01
    • The major factors that govern the vertical distributions of redox sensitive elements (Fe, Mn, U and Mo) in interstitial water are studied by analyzing the measurement of concentrations of Fe, Mn, U and Mo in pore water and sediments in Yangtze estuary, combining with the early diagenesis model and geochemical thermodynamic analysis, The benthic fluxes of Fe, Mn, U and Mo have been calculated according to the Fick's first law. The results show that the concentrations of Fe, Mn, U and Mo in interstitial water in Yangtze Estuary sediments range from 0.8 to 106μmol/L, 14.8 to 258μmol/L, 1.9 to 14.4nmol/L and 60 to 546nmol/L, respectively. The maximum of interstitial Fe2+ and Mn2+ have been observed at 5cm or 10cm in the vertical profiles, respectively. The interstitial iron and manganese profiles are mainly controlled by early diagenetic processes in Yangtze Estuary sediments. Adsorption process has great effect on the distribution of interstitial Fe2+ and Mn2+. The greater the adsorption coefficients are, the less the concentrations of interstitial Fe2+ and Mn2+ are. The vertical distributions of interstitial uranium are mainly controlled by iron. However, there is no correlation between Mo and Fe or Mn. The calculated diffusive fluxes of Fe, Mn, U and Mo range from 3 to 10.5μmol·(m2·d)-1, 35.7 to 439.5μmol·(m2·d)-1, -2.3 to 0.2nmol·(m2·d)-1 and -36 to 94.6nmol·(m2·d)-1, respectively. The ratio of authigenic uranium to total uranium ranges from 6% to 67%.

       

    • loading
    • Aller, R.C., Hall, P.O.J., Rude, P.D., et al., 1998. Biogeochemical heterogeneity and suboxic diagenesis in hemipelagic sediments of the Panama basin. Deep-Sea Research Part I-Oceanographic Research Papers, 45(1): 133-165. doi: 10.1016/S0967-0637(97)00049-6
      Arakaki, T., Morse, J.W., 1993. Coprecipitation and adsorption of Mn(II) with mackinawite (FeS) under conditions similar to those found in anoxic sediments. Geochimica et Cosmochimica Acta, 57(1): 9-14. doi: 10.1016/0016-7037(93)90463-7
      Arnason, J.G., Fletcher, B.A., 2003. A 40 year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, U.S.A. . Environmental Pollution, 123(3): 383-391. doi: 10.1016/S0269-7491(03)00015-0
      Bao, G.D., Huang, D.P., Wang, Y.F., 1984. The origin of authigenic pyrite in surface sediments at the Changjiang River mouth and near the shore. Acta Mineralogica Sinica, 4(2): 167-172 (in Chinese with English abstract).
      Berg, P., Petersen, N.R., Rysgaard, S., 1998. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography, 43(7): 1500-1510. doi: 10.4319/lo.1998.43.7.1500
      Boudreau, B.P., 1994. Is burial velocity a master parameter for bioturbation?Geochimica et Cosmochimica Acta, 58(4): 1243-1249. doi: 10.1016/0016-7037(94)90378-6
      Boudreau, B.P., 1996. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Computers & Geosciences, 22(5): 479-496. doi: 10.1016/0098-3004(95)00115-8
      Boudreau, B.P., 1997. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, Berlin.
      Brugmann, L., Hallberg, R., Larsson, C., et al., 1998. Trace metal speciation in sea and pore water of the Gotland deep, Baltic Sea, 1994. Applied Geochemistry, 13(3): 359-368. doi: 10.1016/S0883-2927(97)00105-4
      Brumsack, H.J., Gieskes, M., 1983. Interstitial water trace-metal chemistry of laminated sediments from the gulf of California, Mexico. Marine Chemistry, 14(1): 89-106. doi: 10.1016/0304-4203(83)90072-5
      Canavan, R.W., Van Cappellen, P., Zwolsman, J.J.G., et al., 2007. Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling. Science of The Total Environment, 381(1-3): 263-279. doi: 10.1016/j.scitotenv.2007.04.001
      Cochran, J.K., Carey, A.E., Sholkovitz, E.R., et al., 1986. The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochimica et Cosmochimica Acta, 50(5): 663-680. doi: 10.1016/0016-7037(86)90344-3
      Contreras, R., Fogg, T.R., Chasteen, N.D., et al., 1978. Molybdenum in the pore waters of anoxic marine sediments by electron paramagnetic resonance spectroscopy. Marine Chemistry, 6(4): 365-373. doi: 10.1016/0304-4203(78)90017-8
      Fernandes, H.M., 1997. Heavy metal distribution in sediments and ecological risk assessment: the role of diagenetic processes in reducing metal toxicity in bottom sediments. Environmental Pollution, 97(3): 317-325. doi: 10.1016/S0269-7491(97)00004-3
      Gao, Y., Leermakers, M., Elskens, M., et al., 2007. High resolution profiles of thallium, manganese and iron assessed by DET and DGT techniques in riverine sediment pore waters. The Science of the Total Environment, 373(2-3): 526-533. doi: 10.1016/j.scitotenv.2006.11.047
      Haese, R.R., Schramm, J., Rutgers, M.M., et al., 2000. A comparative study of iron and manganese diagenesis in continental slope and deep sea basin sediments off Uruguay (SW Atlantic). International Journal of Earth Sciences, 88(4): 619-629. doi: 10.1007/s005310050292
      Helz, G.R., Miller, C.V., Charnock, J.M., et al., 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60(19): 3631-3642. doi: 10.1016/0016-7037(96)00195-0
      Knox, A.S., Brigmon, R.L., Kaplan, D.I., et al., 2008. Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments. The Science of The Total Environment, 395(2-3): 63-71. doi: 10.1016/j.scitotenv.2008.01.061
      Koshikawa, M.K., Takamatsu, T., Takada, J., et al., 2007. Distributions of dissolved and particulate elements in the Yangtze estuary in 1997-2002: background data before the closure of the Three Gorges dam. Estuarine Coastal and Shelf Science, 71(1-2): 26-36. doi: 10.1016/j.ecss.2006.08.010
      Lenhart, J.J., Honeyman, B.D., 1999. Uranium(VI) sorption to hematite in the presence of humic acid. Geochimica et Cosmochimica Acta, 63(19-20): 2891-2901. doi: 10.1016/S0016-7037(99)00269-0
      Liu, J.G., Li, A.C., Xu, Z.K., et al., 2007. Manganese Abnormity in Holocene sediments of the Bohai Sea. Journal of China University of Geosciences, 18(2): 135-141. doi: 10.1016/S1002-0705(07)60027-2
      Malcolm, S.J., 1985. Early diagenesis of molybdenum in estuarine sediments. Marine Chemistry, 16(3): 213-225. doi: 10.1016/0304-4203(85)90062-3
      Martínez-Aguirre, A., Garcice-León, M., Ivanovich, M., 1995. U and Th speciation in river sediments. The Science of the Total Environment, 173-174: 203-209. doi: 10.1016/0048-9697(95)04759-X
      Morford, J.L., Emerson, S.R., Breckel, E.J., et al., 2005. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta, 69(21): 5021-5032. doi: 10.1016/j.gca.2005.05.015
      Morford, J.L., Martin, W.R., Kalnejais, L.H., et al., 2007. Insights on geochemical cycling of U, Re and Mo from seasonal sampling in Boston Harbor, Massachusetts, USA. Geochimica et Cosmochimica Acta, 71(4): 895-917. doi: 10.1016/j.gca.2006.10.016
      Morse, J.W., Eldridge, P.M., 2007. A non-steady state diagenetic model for changes in sediment biogeochemistry in response to seasonally hypoxic/anoxic conditions in the "dead zone" of the Louisiana shelf. Marine Chemistry, 106(1-2): 239-255. doi: 10.1016/j.marchem.2006.02.003
      Nagao, S., Nakashima, S., 1992. Possible complexation of uranium with dissolved humic substances in pore water of marine sediments. The Science of The Total Environment, 117-118: 439-447. doi: 10.1016/0048-9697(92)90109-6
      Roychoudhury, A.N., 2007. Spatial and seasonal variations in depth profile of trace metals in saltmarsh sediments from Sapelo Island, Georgia, USA. Estuarine Coastal and Shelf Science, 72(4): 675-689. doi: 10.1016/j.ecss.2006.12.003
      Sarin, M.M., Church, T.M., 1994. Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries. Estuarine Coastal and Shelf Science, 39(6): 619-631. doi: 10.1016/S0272-7714(06)80013-2
      Sawlan, J.J., Murray, J.W., 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth and Planetary Science Letters, 64(2): 213-230. doi: 10.1016/0012-821X(83)90205-4
      Shaw, T.J., Gieskes, J.M., Jahnke, R.J., 1990. Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54(5): 1233-1246. doi: 10.1016/0016-7037(90)90149-F
      Shaw, T.J., Sholkovitz, E.R., Klinkhammer, G., 1995. Redox dynamics in the Chesapeake Bay: the effect of the sediment/water uranium exchange. Geochimica et Cosmochimica Acta, 58(14): 2985-2993. doi: 10.1016/0016-7037(94)90173-2
      Slomp, C.P., Malschaert, J.F.P., Raaphorst, W.V., 1997. Iron and manganese cycling in different sedimentary environments on the North Sea continental margin. Continental Shelf Research, 17(9): 1083-1117. doi: 10.1016/S0278-4343(97)00005-8
      Soetaert, K., Herman, P.M.J., Middelburg, J.J., 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta, 60(6): 1473-1488. doi: 10.1016/0016-7037(96)00013-0
      Song, J.M., Li, P.C., 1996. Iron and manganese in interstitial waters and sediment environments of Nansha Islands, South China Sea. Acta Scientiae Circumstantiae, 16(3): 294-301 (in Chinese with English abstract).
      Suess, E., 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochimica et Cosmochimica Acta, 43(3): 339-352. doi: 10.1016/0016-7037(79)90199-6
      Sundby, B., Anderson, L.G., Hall Per, O.J., et al., 1986. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochimica et Cosmochimica Acta, 50(6): 1281-1288. doi: 10.1016/0016-7037(86)90411-4
      Sundby, B., Martinez, P., Gobeil, C., 2004. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochimica et Cosmochimica Acta, 68(11): 2485-2493. doi: 10.1016/j.gca.2003.08.011
      Swarzenski, P.W., Baskaran, M., 2007. Uranium distribution in the coastal waters and pore waters of Tampa Bay, Florida. Marine Chemistry, 104(1-2): 43-57. doi: 10.1016/j.marchem.2006.05.002
      Wang, X.Q., Zheng, L.P., Sun, W.M., 2004. The distribution characteristics of heavy metal elements in the pore water of sediment, Dianshan lake. China Environmental Science, 24(4): 400-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHJ200404003.htm
      Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2
      Xu, S.M., Zhai, S.K., Zhang, A.B., et al., 2007a. Redox environment effect on the redox sensitive elements in surface sediments from the Yangtze estuary hypoxia zone. Marine Geology & Quaternary Geology, 27(3): 1-8 (in Chinese with English abstract).
      Xu, S.M., Zhai, S.K., Zhang, A.B., et al., 2007b. Distribution and environment significance of redox sensitive trace elements of the Changjiang estuary hypoxia zone and its contiguous sea area. Acta Sedimentologica Sinica, 25(5): 759-766 (in Chinese with English abstract).
      Yang, Z.S., Chen, X.H., 2007. Centurial high resolution records of sediment grain-size variation in the mud area off the Changjiang (Yangtze River) estuary and its influencial factors. Quaternary Sciences, 27(5): 690-699 (in Chinese with English abstract).
      Ye, S.Y., Wu, Q., Zhong S.J., et al., 2006. Pyritization of trace elements in sediments of the Jiaozhou Bay, Qingdao, China. Earth Science—Journal of China University of Geosciences, 31(2): 175-181 (in Chinese with English abstract).
      Zhao, Y.Y., Yan, M.C., Li, A.C., et al., 2002. Geochemistry of muds along the coast of China and their significance. Geology in China, 29(2): 181-185 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200202013.htm
      Zhang, X.D., Zhai, S.K., Xu, S.M., et al., 2005. The "Grain Size Effect" of redox sensitive elements in the sediments in the hypoxia zone of the Changjiang estuary. Periodical of Ocean University of China, 35(5): 868-874 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHY200505033.htm
      Zheng, Y., Anderson, R.F., Van Geen, A., et al., 2000. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara basin. Geochimica et Cosmochimica Acta, 64(24): 4165-4178. doi: 10.1016/S0016-7037(00)00495-6
      Zheng, Y., Anderson, R.F., Van Geen, A., et al., 2002. Preservation of particulate non-lithogenic uranium in marine sediments. Geochimica et Cosmochimica Acta, 66(17): 3085-3092. doi: 10.1016/S0016-7037(01)00632-9
      鲍根德, 黄德佩, 汪依凡, 1984. 长江口邻近陆架表层沉积物中自生黄铁矿的成因探讨. 矿物学报, 4(2): 167-172. doi: 10.3321/j.issn:1000-4734.1984.02.011
      宋金明, 李鹏程, 1996. 南沙群岛海域沉积物环境与间隙水中的铁锰. 环境科学学报, 16(3): 294-301. doi: 10.3321/j.issn:0253-2468.1996.03.007
      王小庆, 郑乐平, 孙为民, 2004. 淀山湖沉积物孔隙水中重金属元素分布特征. 中国环境科学, 24(4): 400-404. doi: 10.3321/j.issn:1000-6923.2004.04.004
      许淑梅, 翟世奎, 张爱滨, 等, 2007a. 长江口外缺氧区沉积物中元素分布的氧化还原环境效应. 海洋地质与第四纪地质, 27(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200703000.htm
      许淑梅, 翟世奎, 张爱滨, 等, 2007b. 长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义. 沉积学报, 25(5): 759-766. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200705014.htm
      杨作升, 陈晓辉, 2007. 百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨. 第四纪研究, 27(5): 690-699. doi: 10.3321/j.issn:1001-7410.2007.05.010
      叶思源, 武强, 钟少军, 等, 2006. 青岛胶州湾沉积物痕量元素黄铁矿化程度及其剖面类型. 地球科学——中国地质大学学报, 31(2): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602005.htm
      赵一阳, 鄢明才, 李安春, 等, 2002. 中国近海沿岸泥的地球化学特征及其指示意义. 中国地质, 29(2): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200202013.htm
      张晓东, 翟世奎, 许淑梅, 等, 2005. 长江口外缺氧区沉积物中氧化还原敏感性元素的"粒控效应". 中国海洋大学学报, 35(5): 868-874. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200505033.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(5)

      Article views (3764) PDF downloads(105) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return