• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 35 Issue 2
    Mar.  2010
    Turn off MathJax
    Article Contents
    CHEN Ning-hua, WANG Xin, CHEN Han-lin, YANG Shu-feng, TANG Tao, 2010. Quantitative Extraction of Deformation Parameters of Active Tectonics Based on CORONA Stereo Pairs. Earth Science, 35(2): 283-290. doi: 10.3799/dqkx.2010.029
    Citation: CHEN Ning-hua, WANG Xin, CHEN Han-lin, YANG Shu-feng, TANG Tao, 2010. Quantitative Extraction of Deformation Parameters of Active Tectonics Based on CORONA Stereo Pairs. Earth Science, 35(2): 283-290. doi: 10.3799/dqkx.2010.029

    Quantitative Extraction of Deformation Parameters of Active Tectonics Based on CORONA Stereo Pairs

    doi: 10.3799/dqkx.2010.029
    • Received Date: 2009-07-24
    • Publish Date: 2010-03-01
    • In order to efficiently extract quantitative parameters in active tectonics research, JX4C digital photogrammetric system has been used to found stereo model based on CORONA KH-4B stereo pairs with 2 m resolution, which were declassified in 1995 by USA for scientific purpose. Meanwhile, large scale digital elevation model (DEM) and digital orthophoto mapping (DOM) have been formed. These processing techniques are applied in a case study of the Kuqa fold-and-thrust belt in southern Tianshan, China, to quantitatively analyze the Kumugeliemu active fault and the Qiulitage active fault-related folds, considering the seismic reflection profiles therein and data from field measurements. Results show that the CORONA stereo pairs can be used in JX4C digital photogrammetric system, and root mean square error (RMS) of relative orientation is about 0.01 mm, while absolute orientation is about 10 m. Some parameters for deformation of river terrace and fault and fold scarps are identified and measured, which are helpful to reveal the characters of active tectonics. The processing techniques are feasible and effective particularly in remote settings with complex topology and the measurement precision can meet the requirement for analysis of active tectonics.

       

    • loading
    • Altmaier, A., Kany, C., 2002. Digital surface model generation from CORONA satellite images. ISPRS Journal of Photogrammetry & Remote Sensing, 56(4): 221-235. doi: 10.1016/S0924-2716(02)00046-1
      Bai, M.X., 1998. Data of valley terraces in Xinjiang. Inland Earthquake, 12(1): 13-19 (in Chinese with English abstract).
      Chen, J., Scharer, K.M., Burbank, D.W., et al., 2005. Kinematic models of fluvial terraces over active fault-related folds: constraints on the growth mechanism and kinematics. Seismology and Geology, 17(4): 513-529 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200504000.htm
      Chen, L.C., Chen, G.H., Chen, L.Z., et al., 2006. ETM image characteristics and interpretation of active tectonics of the area around the Kalpingtag thrust system. Seismology and Geology, 28(2): 289-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ200602011.htm
      Chen, N.H., Wang, X., Yang, S.F., 2007. Quantitative extraction of shallow stratum information based on CORONA imagery. Journal of Zhejiang University (Engineering Science), 41(4): 662-667 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDZC200704026.htm
      Deng, Q.D., Chen, L.C., Ran, Y.K., 2004. Quantitative studies and applications of active tectonics. Earth Science Frontiers, 11(4): 383-392 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404006.htm
      Deng, Q.D., Feng, X.Y., Zhang, P.Z., et al., 2000. Active tectonics in Tianshan. Seismological Press, Beijing (in Chinese).
      Deng, Q.D., Zhang, P.Z., Ran, Y.K., et al., 2003. Basic characteristics of active tectonics of China. Science in China (Series D), 46(4): 356-372. doi: 10.1360/03yd9032
      Fan, X.T., Lu, H.F., Guo, H.D., et al., 2000. Neotectonic analysis of the Kuqa foreland thrust belt by using remote sensing data. Geological Review, 46(5): 499-506 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200005009.htm
      Hooper, D.M., Bursik, M.I., Webb, F.H., 2003. Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA. Remote Sensing of Environment, 84: 255-267. doi: 10.1016/S0034-4257(02)00110-4
      Hubert-Ferrafi, A., Suppe, J., Gonzalez-Mieres, R., et al., 2007. Mechanisms of active folding of the landscape (southern Tian Shan, China). Journal of Geophysical Research, 112(B3), B03S09-1-B03S09-39. doi: 10.1029/2006JB004362
      Jordan, G., Meijninger, B.M.L., Hinsbergen, D.J.J., et al., 2005. Extraction of morphotectonic features from DEMs: development and applications for study areas in Hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation, 7(3): 163-182. doi: 10.1016/j.jag.2005.03.003
      Lu, H.F., Jia, D., Chen, C.M., et al., 1999. Nature and timing of the Kuqa Cenozoic structures. Earth Science Frontiers, 6(4): 215-221 (in Chinese with English abstract).
      Lu, H.F., Wang, S.L., Suppe, J., et al., 2002. Quaternary folding in the south piedmont of central segment of Tianshan mountains. Chinese Science Bulletin, 47(21): 1675-1679 (in Chinese). doi: 10.1360/csb2002-47-21-1675
      Schwartz, D.P., 1988. Geologic characterization of seismic sources: moving into the 1990s. Geotechnical Special Publication, 20: 1-42.
      Sohn, H.G., Kim, G.H., Yom, J.H., 2004. Mathematical modelling of historical reconnaissance CORONA KH-4B IMAGERY. The Photogrammetric Record, 19(105): 51-66. doi: 10.1046/j.0031-868X.2003.00257.x
      Suppe, J., 1983. Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7): 684-721. doi: 10.2475/ajs.283.7.684
      Suppe, J., Sabat, F., Munoz, J.A., et al., 1997. Bed-by-bed fold growth by kind-bend migration: sant Lorence de Morunys, eastern Paeness. Journal of Structural Geology, 19(3-4): 443-461. doi: 10.1016/S0191-8141(96)00103-4
      Tao, C.V., Hu, Y., 2001. A comprehensive study of the rational function model for photogrammetric processing. Photogrammetric Engineering & Remote Sensing, 67(12): 1347-1357.
      Walker, R.T., 2006. A remote sensing study of active folding and faulting in southern Kerman Province, S.E. Iran. Journal of Structural Geology, 28(4): 654-668. doi: 10.1016/j.jsg.2005.12.014
      Wallace, R.E., 1987. Grouping and migration of surface faulting and variations in slip rates on faults in the great basin province. Bull. Seism. Soc. Am. , 77(3): 868-876. http://www.researchgate.net/publication/279660755_Grouping_and_migration_of_surface_faulting_and_variations_in_slip_rates_on_faults_in_the_Great_Basin_Province
      Wang, X., Ferrafi, A.H., Suppe, J., 2001. Shortening rate since Late Pleistocene in Aksu area, southern flank of Tianshan, China. Chinese Journal of Geology, 36(2): 195-202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZKX200102007&dbcode=CJFD&year=2001&dflag=pdfdown
      Wang, X., Jia, C.Z., Yang, S.F., et al., 2002. The time of deformation on the Kuqa fold-and-thrust belt in the southern Tianshan—based on the Kuqa River area. Acta Geologica Sinica, 76(1): 55-63 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200201010&dbcode=CJFD&year=2002&dflag=pdfdown
      Wu, C.Y., Shen, J., Chen, J.B., et al., 2006. Preliminary study of late Quaternary crustal shortening rate along Kuqa depression in South Tianshan, Xinjiang. Seismology and Geology, 28(2): 279-288 (in Chinese with English abstract).
      Zheng, W.J., Guo, H., Yuan, D.Y., et al., 2002. Application of remote sensing image information in the research of active faults. Earthquake Research in Plateau, 14(2): 15-21 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GYDZ200202002.htm
      柏美祥, 1998. 新疆河谷阶地的年代. 内陆地震, 12(1): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ199801001.htm
      陈杰, Scharer, K.M., Burbank, D.W., 等, 2005. 利用河流阶地限定活动褶皱的类型和生长机制: 运动学模型. 地震地质, 17(4): 513-529. doi: 10.3969/j.issn.0253-4967.2005.04.001
      陈立春, 陈桂华, 陈立泽, 等, 2006. 柯坪塔格推覆系活动构造的ETM影像特征与解译. 地震地质, 28(2): 289-298. doi: 10.3969/j.issn.0253-4967.2006.02.012
      陈宁华, 汪新, 杨树锋, 2007. 基于CORONA影像的浅层地层信息定量提取. 浙江大学学报(工学版), 41(4): 662-667. doi: 10.3785/j.issn.1008-973X.2007.04.027
      邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用. 地学前缘, 11(4): 383-392. doi: 10.3321/j.issn:1005-2321.2004.04.005
      邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造, 北京: 地震出版社.
      邓起东, 张培震, 冉勇康, 等, 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm
      范湘涛, 卢华复, 郭华东, 等, 2000. 库车冲断带新构造遥感分析. 地质论评, 46(5): 499-506. doi: 10.3321/j.issn:0371-5736.2000.05.008
      卢华复, 贾东, 陈楚铭, 等, 1999. 库车新生代构造性质和变形时间. 地学前缘, 6(4): 215-221. doi: 10.3321/j.issn:1005-2321.1999.04.003
      卢华复, 王胜利, Suppe, J., 等, 2002. 天山中段南麓的第四纪褶皱作用. 科学通报, 47(21): 1675-1679. doi: 10.3321/j.issn:0023-074X.2002.21.015
      汪新, Ferrafi, A.H., Suppe, J., 2001. 晚更新世以来南天山阿克苏地区地壳缩短率. 地质科学, 36(2): 195-202. doi: 10.3321/j.issn:0563-5020.2001.02.007
      汪新, 贾承造, 杨树锋, 等, 2002. 南天山库车冲断褶皱带构造变形时间——以库车河地区为例. 地质学报, 76(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200201010.htm
      吴传勇, 沈军, 陈建波, 等, 2006. 新疆南天山库车坳陷晚第四纪以来地壳缩短速率的初步研究. 地震地质, 28(2): 279-288. doi: 10.3969/j.issn.0253-4967.2006.02.011
      郑文俊, 郭华, 袁道阳, 等, 2002. 遥感影像信息在活动断裂研究中的应用. 高原地震, 14(2): 15-21. doi: 10.3969/j.issn.1005-586X.2002.02.003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (3652) PDF downloads(88) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return