• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 35 Issue 4
    Jul.  2010
    Turn off MathJax
    Article Contents
    LIU Xiu-juan, GAO Shu, WANG Ya-ping, 2010. Modeling the Shore-Normal Profile Shape Evolution for an Accretional Tidal Flat on the Central Jiangsu Coast. Earth Science, 35(4): 542-550. doi: 10.3799/dqkx.2010.070
    Citation: LIU Xiu-juan, GAO Shu, WANG Ya-ping, 2010. Modeling the Shore-Normal Profile Shape Evolution for an Accretional Tidal Flat on the Central Jiangsu Coast. Earth Science, 35(4): 542-550. doi: 10.3799/dqkx.2010.070

    Modeling the Shore-Normal Profile Shape Evolution for an Accretional Tidal Flat on the Central Jiangsu Coast

    doi: 10.3799/dqkx.2010.070
    • Received Date: 2009-10-12
    • Publish Date: 2010-07-01
    • The evolution of the shore-normal profile shape of an accretional tidal flat is controlled by the transport of muddy and sandy sediments by tidal currents. To understand the evolution processes, a model is established to simulate the tidal flat profile changes in response to spring-neap tidal cycles, and it is applied to the accretional tidal flat on the central Jiangsu coast to investigate the interrelationships between the initial profile shape of the inter-tidal flat, tidal range, sediment supply, the equilibrium profile shape of the intertidal flat, and the long-term behavior of a prograding profile. The modeling output indicates that: (1) the shape of the accretional tidal flat tends to be convex when reaching its equilibrium state; (2) equilibrium of the intertidal flat morphology is independent of the initial profile shape; (3) if the sediment supply remains stable, then the width of the intertidal flat is positively correlated to tidal range; (4) the width of the intertidal flat increases with sediment supply and the accretion or erosion status of the intertidal flat is determined by sediment supply; (5) there is a need to design an algorithm to treat the area close to high water on springs to simulate long-term growth of the tidal flat; (6) the intertidal flat associated with abundant sediment supply will progradeg towards the sea, and at the same time its equilibrium shape will be maintained; and (7) the width and gradient of the intertidal flat from the model output are consistent with those of the Jiangsu coast, when inputting parameters derived locally for the model.

       

    • loading
    • Amos, C.L., 1995. Siliciclastic tidal flats. In: Perillo, G.M.E., ed. . Geomorphology and sedimentology of estuaries. Elsevier Science BV, 273-306.
      Chen, C.J., 1991. Development of depositional tidal flat in Jiangsu Province. Oceanologia et Limnologia Sinica, 22(4): 360-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199104010.htm
      Chen, J.X., Li, T.G., Nan, Q.Y., 2009. Variations of Terrigenous material discharges in the South Okinawa trough and its relation to the East Asian summer monsoon since the last millennium. Earth Science—Journal of China University of Geosciences, 34(5): 811-818 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.091
      Draut, A.E., Kineke, G.C., Huh, O.K., et al., 2005. Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Marine Geology, 214(1-3): 27-47. doi: 10.1016/j.margeo.2004.10.033
      Gao, S., 2009. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China. Continental Shelf Research, 29(16): 1927-1936. doi: 10.1016/j.csr.2008.12.010
      Gao, S., Zhu, D.K., 1988. The profile of Jiangsu's mud coast. Journal of Nanjing University (Natural Sciences), 24(1): 75-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ198801006.htm
      Gu, Y.S., Qiu, H.O., Xie, S.C., et al., 2008. Lake sediment records for eutrophication history in response to human activity during recent century in the Liangzi lake, Hubei Province. Earth Science—Journal of China University of Geosciences, 33(5): 679-686 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.083
      Kamp, P.J.J., Naish, T., 1998. Forward modelling of the sequence stratigraphic architecture of shelf cyclothems: application to Late Pliocene sequences, Wanganui basin (New Zealand). Sedimentary Geology, 116(1-2): 57-80. doi: 10.1016/S0037-0738(97)00080-8
      Kineke, G.C., Sternberg, R.W., 1989. The effect of particle settling velocity on computed suspended sediment concentration profiles. Marine Geology, 90(3): 159-174. doi: 10.1016/0025-3227(89)90039-X
      Kirby, R., 2000. Practical implications of tidal flat shape. Continental Shelf Research, 20(10-11): 1061-1077. doi: 10.1016/S0278-4343(00)00012-1
      Kirby, J.R., Kirby, R., 2008. Medium timescale stability of tidal mudflats in Bridgwater Bay, Bristol Channel, UK: influence of tides, waves and climate. Continental Shelf Research, 28(19): 2615-2629. doi: 10.1016/j.csr.2008.08.006
      Krone, R.B., 1962. Flume studies of the transport of sediment in estuarial shoaling processes. Hydraulics Engineering Laboratory and Sanitary Engineering Research Laboratory, University of Berkeley, California.
      Lee, S.C., Mehta, A.J., 1997. Problems in characterizing dynamics of mud shore profiles. Journal of Hydraulic Engineering, 123(4): 351-361. doi: 10.1061/10.1061/(ASCE)0733-9429(1997)123:4(351)
      Li, Z.H., Gao, S., Shen, H.T., et al., 2006. Characteristics of grain-size distributions of suspended sediment and its response to dynamics over the Dafeng tidalflat, Jiangsu coast in China. Acta Oceanologica Sinica, 28(4): 87-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC200604010&dbcode=CJFD&year=2006&dflag=pdfdown
      Miller, M.C., McCave, I.N., Komar, P.D., 2006. Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4): 507-527. doi: 10.1111/j.1365-3091.1977.tb00136.x
      Nielsen, P., 1992. Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering, World Scientific Publishing, 4.
      Paarlberg, A.J., Knaapen, M.A.F., de Vries, M.B., et al., 2005. Biological influences on morphology and bed composition of an intertidal flat. Estuarine, Coastal and Shelf Sciences, 64(4): 577-590. doi: 10.1016/j.ecss.2005.04.008
      Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, ASCE, 91: 105-139. doi: 10.1061/JYCEAJ.0001165
      Pritchard, D., Hogg, A.J., Roberts, W., 2002. Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents. Continental Shelf Research, 22(11-13): 1887-1895. doi: 10.1016/S0278-4343(02)00044-4
      Pritchard, D., Hogg, A.J., 2003. Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. Journal of Geophysical Research, 108(C10): 3313-3327. doi: 10.1029/2002JC001570
      Ren, M.E., ed., 1986. Comprehensive investigation of coastal zone and tidal flat resources, Jiangsu Province. China Ocean Press, Beijing (in Chinese).
      Roberts, W., Le Hir, P., Whitehouse, R.J.S., 2000. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Continental Shelf Research, 20(10-11): 1079-1097. doi: 10.1016/S0278-4343(00)00013-3
      Soulsby, R.L., Whitehouse, R.J.S., 1997. Threshold of sediment motion in coastal environments. Pacific Coasts and Ports'97, Proceedings Volume 1: 149-154.
      van Ledden, M., 2002. A process-based sand-mud model. In: Winterwerp, J.C., Kranenburg, C., eds., Proceedings of Marine Science. Amsterdam, Elsevier, 5: 577-594
      van Straaten, L.M.J.U., 1961. Sedimentation in tidal flat areas. Journal of the Alberta Society of Petroleum Geologists, 9: 203-226.
      Wang, Y., Zhu, D.K., 1994. Coastal geomorphology. High Education Press, Beijing, 180-181 (in Chinese).
      Yang, B.C., Dalrymple, R.W., Chun, S.S., 2005. Sedimentation on a wave-dominated, open-coast tidal flat, south-western Korea: summer tidal flat-winter shoreface. Sedimentology, 52(2): 235-252. doi: 10.1111/j.1365-3091.2004.00692.x
      Zhang, R.S., 1984. Land-forming history of the Huanghe River delta and coastal plain of North Jiangsu. Acta Geographica Sinica, 39(2): 173-184 (in Chinese with English abstract). http://www.researchgate.net/publication/322774918_Land-forming_history_of_the_Huanghe_River_delta_and_coastal_plain_of_north_Jiangsu
      Zhang, R.S., 1986. Characteristics of tidal current and sedimentation of suspended load on tidal mud flat in Jiangsu Province. Oceanologia et Limnologia Sinica, 17(3): 235-245 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ198603007.htm
      Zhang, Y., Swift, D.J.P., Yu, Z.Y., et al., 1998. Modeling of coastal profile evolution on the abandoned delta of the Huanghe River. Marine Geology, 145(1-2): 133-148. doi: 10.1016/S0025-3227(97)00110-2
      Zhang, Y., Yu, Z.Y., Jin, L., 1993. The erossion process model of mud flat by wave. The Ocean Engineering, 11(4): 74-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC199304010.htm
      Zhang, Y.F., Li, C.A., Chen, L., et al., 2009. Magnetic fabric of Holocene palaeo-floods events in Jianghan plain. Earth Science—Journal of China University of Geosciences, 34(6): 985-992 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.112
      Zhu, D.K., Gao, S., 1985. A mathematical model for the geomorphic evolution and sedimentation of tidal flats. Marine Science Bulletin, 4(5): 15-21 (in Chinese with English abstract). http://www.researchgate.net/publication/282586586_Zhu_D-K_and_Gao_S_1985_A_mathematical_model_for_the_geomorphic_evolution_and_sedimentation_of_tidal_flats_in_Chinese_with_English_abstract_Marine_Science_Bulletin_v4_no5_p15_21
      Zhu, D.K., Xu, T.G., 1982. The cast development and exploit of middle Jiangsu. Journal of Nanjing University (Natural Sciences), 3: 799-818 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ198203023.htm
      陈才俊, 1991. 江苏淤长型淤泥质潮滩的剖面发育. 海洋与湖沼, 22(4): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199104010.htm
      陈金霞, 李铁刚, 南青云, 2009. 冲绳海槽千年来陆源物质输入历史与东亚季风变迁. 地球科学——中国地质大学学报, 34(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905015.htm
      高抒, 朱大奎, 1988. 江苏淤泥质海岸剖面的初步研究. 南京大学学报(自然科学版), 24(1): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198801006.htm
      顾延生, 邱海鸥, 谢树成, 等, 2008. 湖北梁子湖近代沉积记录对人类活动的响应. 地球科学——中国地质大学学报, 33(5): 679-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805014.htm
      李占海, 高抒, 沈焕庭, 等, 2006. 江苏大丰潮滩悬沙级配特征及其动力响应. 海洋学报, 28(4): 87-95. doi: 10.3321/j.issn:0253-4193.2006.04.011
      任美锷, 主编, 1986. 江苏省海岸带与海涂资源综合调查报告. 北京: 海洋出版社.
      王颖, 朱大奎, 1994. 海岸地貌学. 北京: 高等教育出版社, 180-181.
      张忍顺, 1984. 苏北黄河三角洲及滨海平原的成陆过程. 地理学报, 39(2): 173-184. doi: 10.3321/j.issn:0375-5444.1984.02.005
      张忍顺, 1986. 江苏省淤泥质潮滩的潮流特征及悬移质沉积过程. 海洋与湖沼, 17(3): 235-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198603007.htm
      张勇, 虞志英, 金镠, 1993. 波浪作用下淤泥质海滩剖面侵蚀过程的计算模式——以江苏北部淤泥质海岸为例. 海洋工程, 11(4): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC199304010.htm
      张玉芬, 李长安, 陈亮, 等, 2009. 基于磁组构特征的江汉平原全新世古洪水事件. 地球科学——中国地质大学学报, 34(6): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906014.htm
      朱大奎, 高抒, 1985. 潮滩地貌与沉积的数学模型. 海洋通报, 4(5): 15-21.
      朱大奎, 许廷官, 1982. 江苏中部海岸发育和开发利用问题. 南京大学学报(自然科学版), 3: 799-818. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198203023.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (3283) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return