• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 35 Issue 5
    Sep.  2010
    Turn off MathJax
    Article Contents
    WANG An, WANG Guo-can, ZHANG Ke-xin, Garver I. John, 2010. An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology. Earth Science, 35(5): 737-746. doi: 10.3799/dqkx.2010.088
    Citation: WANG An, WANG Guo-can, ZHANG Ke-xin, Garver I. John, 2010. An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology. Earth Science, 35(5): 737-746. doi: 10.3799/dqkx.2010.088

    An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology

    doi: 10.3799/dqkx.2010.088
    • Received Date: 2010-05-31
    • Publish Date: 2010-09-01
    • The eastern Kunlun Orogen,as a southernmost morphotectonic transition belt of northward attenuation in topographic relief across the northern Tibetan plateau,is a key area in examining and recovering the processing and mechanisms of the far-field lithospheric deformation. In this paper,we try to illustrate the Early Cenozoic tectonic processing in the eastern Kunlun Orogen based on a systematic detrital zircon fission track (ZFT) study. It is indicated that widely distributed pre-Cenozoic strata in the study area experienced a ZFT differential resetting (~300—200℃) at around Paleocene-Eocene postdating their burying. Binomial fitting for the single grain ages yielded youngest peak ages (P1) that mainly fall between 42—59 Ma,which corresponds to a ceasing timing for the differential resetting of detrital,Regional thermal history. Relevant data concordantly suggest that the eastern Kunlun Orogen experienced a regional tectonic uplift in Paleocene-Eocene,which coincides with the timing of the Indian-Asian collision,which implies that the Kunlun Orogen occurred as a deformation frontier instantly as the Indian plate collided with Asian plate. Our study provides an evidence that the Tibetan lithosphere (or curst) deformation at early stage is essentially of rigid plate,rather than the present day of significant continuous deformation,which might be a combined result by several mechanisms of lithospheric layers thickened respectively.

       

    • loading
    • Bai, D.Y., Meng, D.B., Liu, Y.R., et al., 2003. Apatite fission-track records of the tectonic uplift of the central segment of the Kunlun Mountains on the northern margin of the Qinghai-Tibet plateau. Chinese Geology, 30(3): 240-246 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200303002.htm
      Bernet, M., Garver, J.I., 2005. Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1): 205-237. doi: 10.2138/rmg.2005.58.8
      Brandon, M.T., 1992. Decomposition of fission-track grain-age distributions. American Journal of Science, 292: 535-564. doi: 10.2475/ajs.292.8.535
      Brandon, M.T., Vance, J.A., 1992. Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. American Journal of Science, 292: 565-636. doi: 10.2475/ajs.292.8.565
      Dai, S., Fang, X.M., Song, C.H., et al., 2005. Early stage tectonic uplift of the northern Tibetan plateau. Chinese Science Bulletin, 50(7): 673-683 (in Chinese). doi: 10.1360/csb2005-50-7-673
      Dayem, K.E., Molnar, P., Clark, M.K., et al., 2009. Far-field lithospheric deformation in Tibet during continental collision. Tectonics, 28, TC6005. doi: 10.1029/2008TC002344
      England, P.C., Houseman, G.A., Osmaston, M.F., et al., 1988. The mechanics of the Tibetan plateau. Philosophical Transactions of the Royal Society of London (Series A), 326(1589): 301-320.
      Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala Section in the eastern Qaidam basin on the NE Tibetan plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. doi: 10.1016/j.epsl.2007.03.042
      Galbraith, R.F., Green, P.F., 1990. Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation (Part D), 17(3): 197-206. http://www.sciencedirect.com/science/article/pii/135901899090035V
      Garver, J.I., Kamp, P.J.J., 2002. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the southern Alps, New Zealand. Tectonophysics, 349(1-4): 203-219. doi: 10.1016/S0040-195(02)00054-9
      Garver, J.I., Reiners, P.W., Walker, L.J., et al., 2005. Implications for timing of Andean uplift from thermal resetting of radiation-damaged zircon in the Cordillera Huayhuash, northern Peru. Journal of Geology, 113: 117-138. doi: 10.1086/427664
      Gleadow, A.J., Duddy, I.R., 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5(1-2): 169-174. doi: 10.1016/0191-278X(81)90039-1
      Green, P.F., Duddy, I.R., Gleadow, A.J., et al., 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59(4): 237-253. doi: 10.1016/0168-9622(86)90074-6
      Jade, S., Bhatt, B.C., Yang, Z., et al., 2004. GPS measurements from the Ladakh Himalaya, India: preliminary tests of plate-like or continuous deformation in Tibet. GSA Bulletin, 116(11-12): 1385-1391. doi: 10.1130/B25357.1
      Kasuya, M., Naeser, C.W., 1988. The effect of alpha-damage on fission-track annealing in zircon. Nuclear Tracks and Radiation Measurements, 14(4): 477-480. doi: 10.1016/1359-0189(88)90008-8
      Li, D.W., 2003. A new model for uplifting mechanism of Qinghai-Tibet plateau. Earth Science—Journal of China University of Geosciences, 28(6): 593-600 (in Chinese with English abstract).
      Li, D.W., Zhuang, Y.X., 2006. Scientific problems of continental dynamics in the Qinghai-Tibet plateau. Geological Science and Technology Information, 25(2): 1-10, 18 (in Chinese with English abstract).
      Li, H.B., Yang, J.S., 2004. Evidence for Cretaceous uplift of the northern Qinghai-Tibetan plateau. Earth Science Frontiers, 11(4): 345-359 (in Chinese with English abstract).
      Li, J.J., Fang, X.M., Pan, B.T., et al., 2001. Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on environments in surrounding area. Quaternary Sciences, 21(5): 381-391 (in Chinese with English abstract). http://www.researchgate.net/publication/284098400_Late_Cenozoic_intensive_uplift_of_Qinghai-Xizang_Plateau_and_its_impacts_on_environments_in_surrounding_area
      Lin, A.M., Fu, B.H., Guo, J.M., et al., 2002. Co-seismic strike-slip and rupture length produced by the 2001 MS 8.1 Central Kunlun earthquake. Science, 296(5575): 2015-2017. doi: 10.1126/science.1070879
      Lin, D., Kapp, P., Xiao, Q.W., 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, South Central Tibet. Tectonics, 24(3). doi: 10.1029/2004TC001729
      Mock, C., Arnaud, N.O., Cantagrel, J.M., 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary Science Letters, 171(1): 107-122. doi: 10.1016/S0012-821X(99)00133-8
      Rahn, M.K., Brandon, M.T., Batt, G.E., et al., 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist, 89(4): 473-484. doi: 10.2138/am-2004-0401
      Rowley, D.B., 1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain Section. Journal of Geology, 106: 229-235. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=420038&site=ehost-live
      Spiegel, C., Kohn, B., Raza, A., et al., 2007. The effect of long-term low-temperature exposure on apatite fission track stability: a natural annealing experiment in the deep ocean. Geochimica et Cosmochimica Acta, 71(18): 4512-4537. doi: 10.1016/j.gca.2007.06.060
      Tapponnier, P., Molnar, P., 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264(5584): 319-324. doi: 10.1038/264319a0
      Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
      Wang, A., Wang, G.C., Xie, D.F., et al., 2007. Fission track geochronology of Xiaonanchuan pluton and the morphotectonic evolution of eastern Kunlun since Late Miocene. Earth Science—Journal of China University of Geosciences, 32(1): 51-58 (in Chinese with English abstract).
      Wang, A., Wang, G.C., Li, D.W., et al., 2009a. Tectonic landform of Quaternary lakes and its implications for deformation in the northern Qinghai-Tibet plateau. Acta Geologica Sinica, 83 (1): 121-129. doi: 10.1111/j.1755-6724.2009.00014.x
      Wang, A., Wang, G.C., Zhang, K.X., et al., 2009b. Late Neogene mountain building of eastern Kunlun orogen: constrained by DEM analysis. Journal of Earth Science, 20(2): 391-400. doi: 10.1007/s12583-009-0032-1
      Wang, C.Y., Lou, H., Lü, Z.Y., et al., 2008. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan plateau—deep environment of lower crustal flow. Science in China (Ser. D), 38(1): 22-32 (in Chinese).
      Wang, E.Q., 1997. Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet. Earth and Planetary Science Letters, 150(1-2): 55-64. doi: 10.1016/S0012-821X(97)00085-X
      Wang, F., Lo, C.H., Li, Q., et al., 2004. Onset timing of significant unroofing around Qaidam basin, northern Tibet, China: constraints from 40Ar/39Ar and FT thermochronology on granitoids. Journal of Asian Earth Science, 24(1): 59-69. doi: 10.1016/j.jseaes.2003.07.004
      Wang, G.C., Xiang, S.Y., Garver, J.I., et al., 2003. Uplift and exhumation during Mesozoic in Halaguole-Hatu area, east segment of eastern Kunlun Mountains: evidence from zircon and apatite fission-track ages. Earth Science—Journal of China University of Geosciences, 28(6): 645-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200306010.htm
      Wang, G.C., Xiang, S.Y., Wang, A., et al., 2007. Thermochronological constraint to the processes of the East Kunlun and adjacent areas in Mesozoic-Early Cenozoic. Earth Science—Journal of China University of Geosciences, 32(5): 605-614, 680 (in Chinese with English abstract).
      Wang, Q.L., Wang, J.H., Zhu, G.Z., et al., 2004. Vertical deformations of the eastern Kunlun fault zone and west of Kunlun Mountain pass MS 8.1 earthquake. Seismology and Geology, 26(2): 273-280 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZDZ200402008.htm
      Wang, Q., Zhang, P.Z., Freymueller, J.T., et al., 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542): 574-577. doi: 10.1126/science.1063647
      Wu, Z.H., Hu, D.G., Song, B., et al., 2005. Ages and thermo-chronological evolution of the North Xidatan granite in the South Kunlun Mts. Acta Geologica Sinica, 79(5): 628-635 (in Chinese with English abstract). http://www.researchgate.net/publication/279675807_Ages_and_thermo-chronological_evolution_of_the_north_Xidatan_granite_in_the_South_Kunlun_Mts
      Xiang, S.Y., Wang, G.C., Deng, Z.L., 2003. Deposit response to important tectonic events of Cenozoic plateau uplift, east segment of eastern Kunlun Mountains. Earth Science—Journal of China University of Geosciences, 28(6): 615-620 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200306005.htm
      Xu, Z.Q., Yang, J.S., Qi, X.X., et al., 2006. India-Asia collision: a further discussion of N-S- and E-W-trending detachments and the orogenic mechanism of the modern Himalayas. Geological Bulletin of China, 25(1-2): 1-14 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZQYD2006Z1003&dbcode=CJFD&year=2006&dflag=pdfdown
      Yin, A., Dang, Y.Q., Chen, X.H., et al., 2007. Cenozoic evolution and tectonic reconstruction of the Qaidam basin: evidence from seismic profiles. Journal of Geomechanics, 13(3): 193-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200703000.htm
      Yin, H.F., Zhang, K.X., 1997. Characteristics of the eastern Kunlun orogenic belt. Earth Science—Journal of China University of Geosciences, 22(4): 339-342 (in Chinese with English abstract).
      Yu, S.L., Ji, J.Q., Chen, J.J., et al., 2006. Lower crust flow and large-scale geomorphy of Qinghai-Tibet plateau. Geological Science and Technology Information, 25(5): 1-7, 20 (in Chinese with English abstract).
      Yuan, W.M., Zhang, X.T., Dong, J.Q., et al., 2004. Apatite fission track evidence on the uplifting of eastern Kunlun Mountains. Atomic Energy Science and Technology, 38(2): 166-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YZJS200402016.htm
      Yuan, W.M., Dong, J.Q., Wang, S.C., et al., 2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet plateau, China. Journal of Asian Earth Sciences, 27(6): 847-856. doi: 10.1016/j.jseaes.2005.09.002
      Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene-Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract).
      Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Science in China (Earth Sciences), 53(9): 1271-1294. doi: 10.1007/s11430-010-4048-2.
      Zhang, P.Z., Wang, Q., Ma, Z.J., 2002. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet plateau. Earth Science Frontiers, 9(2): 442-450 (in Chinese with English abstract).
      Zhang, P.Z., Shen, Z., Wang, M., et al., 2004. Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9): 809-812. doi: 10.1130/G20554.1
      Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2003. Late Cenozoic deformation subsequence in northeastern margin of Tibet—detrital AFT records from Linxia basin. Science in China (Ser. D), 33(Suppl. ): 190-198 (in Chinese).
      Zhong, D.L., Ding, L., 1996. Rising process of the Qinghai-Xizang (Tibet) plateau and its mechanism. Science in China (Ser. D), 26(4): 289-295 (in Chinese).
      Zhu, B., Kidd, W.S.F., Rowley, D.B., et al., 2005. Age of initiation of the India-Asia collision in the East-Central Himalaya. Journal of Geology, 113(3): 265-285. doi: 10.1086/428805
      柏道远, 孟德保, 刘耀荣, 等, 2003. 青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录. 中国地质, 30(3): 240-246. doi: 10.3969/j.issn.1000-3657.2003.03.003
      戴霜, 方小敏, 宋春晖, 等, 2005. 青藏高原北部的早期隆升. 科学通报, 50(7): 673-683. doi: 10.3321/j.issn:0023-074X.2005.07.011
      李德威, 2003. 青藏高原隆升机制新模式. 地球科学——中国地质大学学报, 28(6): 593-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306002.htm
      李德威, 庄育勋, 2006. 青藏高原大陆动力学的科学问题. 地质科技情报, 25(2): 1-10, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200602000.htm
      李海兵, 杨经绥, 2004. 青藏高原北部白垩纪隆升的证据. 地学前缘, 11(4): 345-359. doi: 10.3321/j.issn:1005-2321.2004.04.002
      李吉均, 方小敏, 潘保田, 等, 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响. 第四纪研究, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001
      王岸, 王国灿, 谢德凡, 等, 2007. 东昆仑山小南川岩体裂变径迹年代与中新世晚期以来的构造地貌演化. 地球科学——中国地质大学学报, 32(1): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701006.htm
      王椿镛, 楼海, 吕智勇, 等, 2008. 青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环境. 中国科学(D辑), 38(1): 22-32. doi: 10.3321/j.issn:1006-9267.2008.01.003
      王国灿, 向树元, Garver, J.I., 等, 2003. 东昆仑东段哈拉郭勒—哈图一带中生代的岩石隆升剥露——锆石和磷灰石裂变径迹年代学证据. 地球科学——中国地质大学学报, 28(6): 645-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306010.htm
      王国灿, 向树元, 王岸, 等, 2007. 东昆仑及相邻地区中生代—新生代早期构造过程的热年代学记录. 地球科学——中国地质大学学报, 32(5): 605-614, 680. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705005.htm
      王庆良, 王建华, 朱桂芝, 等, 2004. 东昆仑山断裂带及昆仑山口西8.1级地震垂直形变研究. 地震地质, 26(2): 273-280. doi: 10.3969/j.issn.0253-4967.2004.02.009
      吴珍汉, 胡道功, 宋彪, 等, 2005. 昆仑山南部西大滩盆北花岗岩的年龄与热历史. 地质学报, 79(5): 628-635. doi: 10.3321/j.issn:0001-5717.2005.05.007
      向树元, 王国灿, 邓中林, 2003. 东昆仑东段新生代高原隆升重大事件的沉积响应. 地球科学——中国地质大学学报, 28(6): 615-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306005.htm
      许志琴, 杨经绥, 戚学祥, 等, 2006. 印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论. 地质通报, 25(1-2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z1003.htm
      尹安, 党玉琪, 陈宣华, 等, 2007. 柴达木盆地新生代演化及其构造重建——基于地震剖面的解释. 地质力学学报, 13(3): 193-211. doi: 10.3969/j.issn.1006-6616.2007.03.001
      殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学——中国地质大学学报, 22(4): 339-342. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.000.htm
      余绍立, 季建清, 陈建军, 等, 2006. 下地壳流变层对青藏高原及其周边大尺度地貌的制约. 地质科技情报, 25(5): 1-7, 20. doi: 10.3969/j.issn.1000-7849.2006.05.001
      袁万明, 张雪亭, 董金泉, 等, 2004. 东昆仑隆升作用的裂变径迹研究. 原子能科学技术, 38(2): 166-168. doi: 10.3969/j.issn.1000-6931.2004.02.015
      张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm
      张培震, 王琪, 马宗晋, 2002. 青藏高原现今构造变形特征与GPS速度场. 地学前缘, 9(2): 442-450. doi: 10.3321/j.issn:1005-2321.2002.02.023
      郑德文, 张培震, 万景林, 等, 2003. 青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录. 中国科学(D辑), 33(增刊): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1020.htm
      钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289-295. doi: 10.3321/j.issn:1006-9267.1996.04.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(1)

      Article views (3495) PDF downloads(112) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return