• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 35 Issue 6
    Jun.  2010
    Turn off MathJax
    Article Contents
    ZHANG Jian-fang, ZHENG You-ye, ZHANG Gang-yang, GAO Shun-bao, YE Xian-ren, ZHANG Zhong, LIU Min-yuan, LI Ji-qiu, 2010. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya: Constraints from Multi-Isotope Geochemistry. Earth Science, 35(6): 1000-1010. doi: 10.3799/dqkx.2010.113
    Citation: ZHANG Jian-fang, ZHENG You-ye, ZHANG Gang-yang, GAO Shun-bao, YE Xian-ren, ZHANG Zhong, LIU Min-yuan, LI Ji-qiu, 2010. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya: Constraints from Multi-Isotope Geochemistry. Earth Science, 35(6): 1000-1010. doi: 10.3799/dqkx.2010.113

    Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya: Constraints from Multi-Isotope Geochemistry

    doi: 10.3799/dqkx.2010.113
    • Received Date: 2010-05-27
    • Publish Date: 2010-11-01
    • Zhaxikang deposit is the only large Pb-Zn-Sb-Ag symbiotic deposit in the northern Himalayas gold-antimony polymetallic belt, with its ore body located in the high-angle twisting fault zone striking SN direction. The δ34S of pyrite, sphalerite, galena, jamesonite, stibnite ranges from 4.5‰ to 12.0‰, with the majority ranging from 8‰ to 11‰, and it is enriched in sulfur with a narrow range, indicating that the same sulfur source, mainly from the rock formation in the marine sulfur reduction. The ratio of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb is at 18.474-19.637, 15.649-15.774 and 39.660-40.010 respectively, falling near the upper crust of lead evolution line within the investment plan, and into a straight line. δDV-SMOW values of water in fluid inclusions of quartz varies from -127‰ to -135‰, δ18OH2O to -13.7‰ to 12.4‰, in the distribution of geothermal water in Tibet. He-Ar isotopes shows that the ore-forming fluid was mainly derived from rustal fluids and saturated meteoric water, and apparently there is no mixing mantle fluid composition. The multi-isotope composition of the deposit has significant difference with gold or gold-antimony deposit in North Himalayan metallogenic belt, which indicates its unique mineralization of Zhaxikang deposits. As the Indian plate colliding to Eurasian plate in Miocene post-collisional transition environment from intra-continental orogeny to extension slip in North Himalayan belt, there formed a series of high-angle fault zones of SN direction, causing partial melting of crust which increased local heat flux sharply and geothermal gradient anomalies driving groundwater convection cycle, extracting metallogenic elements from Late Triassic-Early Cretaceous turbidite or black carbon and silicon gray mudstone strata The deposit formed by replacement and filling along the SN fault zone, which belongs to sedimentary-structural-geothermal water multi-stage replacement and hydrothermal vein deposits.

       

    • loading
    • Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414: 738-742. doi: 10.1038/414738a
      Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J. Geophys. Res., 109, B06406. doi: 10:1029/2003JB002809
      Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001. Normal faulting in Central Tibet since at least 13.5 Myr ago. Nature, 412: 628-632. doi: 10.1038/35088045
      Brown, L.D., Zhao, W.J., Nelson, K.D., et al., 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688-1690. doi: 10.1126/science.274.5293.1688
      Chen, Y.J., Chen, H.Y., Liu, Y.L., et al., 1999. Progress and records in the study of endogenetic mineralization during collisional orogenesis. Chinese Science Bulletin, 45(1): 1-10. doi: 10.1007/BF02884893
      Chen, Y.J., Guo, G.J., Li, X., 1998. Metallogenic geodynamic background of Mesozoic gold deposits in granite-greenstone terrains of North China craton. Science in China (Series D), 41(2): 113-120. doi: 10.1007/BF02932429
      Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52. doi: 10.1038/374049a0
      Fu, W., Zhou, Y.Z., Yang, Z.J., et al., 2005. Characteristics of multi-horizon ore-bearing formations in southern Tibet Au-Sb metallogenic belt and its controlling factors. Geotectonica et Metallogenia, 29(3): 321-327 (in Chinese with English abstract).
      Hoke, L., Lamb, S., Hilton, D., et al., 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: implications for lithoshperic structure. Earth Planet. Sci. Lett., 180(3-4): 297-308. doi: 10.1016/S0012-821X(00)00174-6
      Hou, Z.Q., Li, Z.Q., 2004. Possible location for underthrusting front of the Indus continent: constraints from helium isotope of the geothermal gas in southern Tibet and eastern Tibet. Acta Geologica Sinica, 78(4): 482-493 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb200404007
      Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006. Tibetan collisional OI'ogenic belt: Ⅲ. Mineralization in post-collisional extension setting. Mineral Deposits, 25(6): 629-651 (in Chinese with English abstract).
      Li, J.G., 2000. Study on Mesozoic compound Sedex type of antimony and copper deposits of continental margin in central and southern of Tibet (Dissertation). Chengdu Institute of Technology, Chengdu (in Chinese with English abstract).
      Li, Z.Q., Hou, Z.Q., Nie, F.J., et al., 2005. Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the South Tibet. Acta Geologica Sinica, 79(1): 68-77 (in Chinese with English abstract).
      Meng, X.J., Yang, Z.S., Qi, X.X., et al., 2008. Silicon-oxygen-hydrogen isotopic compositions of Zaxikang antimony polymetallic deposit in southern Tibet and its responses to the ore-controlling structure. Acta Petrologica Sinica, 24(7): 1649-1655 (in Chinese with English abstract).
      Murphy, M.A., Harrison, T.M., 1999. Relationship between leucogranities and the Qomolangma detachment in the Rongbuk valley, South Tibet. Geology, 27: 831-834. doi: 10.1130/0091-7613(1999)027<0831:RBLATQ>2.3.CO;2
      Nelson, K.D., Zhao, W.J., Brown, L.D., et al., 1996. Parially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science, 274(5293): 1684-1688. doi: 10.1126/science.274.5293.1684
      Qi, X.X., Li, T.F., Meng, X.J., et al., 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault-fold belt in southern Tibet and is constraint on antimony-gold polymetallic minerogenesis. Acta Petrologica Sinica, 24(7): 1638-1648 (in Chinese with English abstract).
      Schärer, U., Xu, R.H., Allègre, C.J., 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth Planet. Sci. Lett., 77(1): 35-48. doi: 10.1016/0012-821X(86)90130-5
      Searle, M.P., Godin, L., 2003. The South Tibetan detachment and the Manaslu leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. Journal of Geology, 111: 505-523. doi: 10.1086/376763
      Shen, F., Royden, L.H., Burchfiel, B.C., 2001. Large-scale crustal deformation of the Tibetan plateau. J. Geophy. Res., 106: 6793-6816. doi: 10.1029/2000JB900389
      Shen, X.J., Zhang, W.R., Yang, S.Z., et al., 1990. Heat flow and heat evolvement of terrain tectonic in Qinghai-Xizang plateau. Geological Publishing House, Beijing, 1-90 (in Chinese).
      Wang, X.D., Ni, P., Jiang, S.Y., et al., 2009. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: evidence from helium and argon isotopes. Chinese Science Bulletin, 54(21): 3338-3344 (in Chinese). doi: 10.1360/csb2009-54-21-3338
      Williams, H., Turner, S., Kelley, S., et al., 2001. Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342. doi:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2
      Yang, Z.S., Hou, Z.Q., Gao, W., et al., 2006. Metallogenic characteristics and genetic model of antimony and gold deposits in South Tibetan detachment system. Acta Geologica Sinica, 80(9): 1377-1391 (in Chinese with English abstract).
      Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geology Reviews, 36(1-3): 194-212. doi: 10.1016/j.oregeorev.2009.03.005
      Ye, X.R., Wu, M.B., Sun, M.L., 2001. Determination of the noble gas isotopic composition in rocks and minerals by mass spectrometry. Rock and Mineral Analysis, 20(3): 174-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200103002.htm
      Yin, A., 2001. The geological evolution of the Himalayan-Tibetan orogen—the growth of Asian continent during the Phanerozoic. Acta Geoscientia Sinica, 22(3): 193-230 (in Chinese with English abstract).
      Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999. Evidence for significant Late Cenozoic E-W extension in North Tibet. Geology, 27: 787-790. doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
      Yu, J.J., 2001. Mineralization of antimony metallogenic zone in northern Tibet and a simple comparison of antimony metallogenic zones in northern Tibet and southern Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Zartman, R.E., Doe, B.R., 1981. Plumbotectonics—the model. Tectonophysics, 75(1-2): 135-162. doi: 10.1016/0040-1951(81)90213-4
      Zhang, J.J., Guo, L., 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the South Tibetan detachment system. Journal of Asian Earth Sciences, 29(5-6): 722-736. doi: 10.1016/j.jseaes.2006.05.003
      Zhao, W.J., Nelson, K.D., Project INDEPTH Team, 1996. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557-559.
      Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982. Hydrogen and oxygen isotopic studies of thermal waters in Xizang. Acta Scientiarum Naturalium Universitatis Pekinensis, (1): 99-106 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/19812608807.html
      Zheng, Y.Y., Duo, J., Ma, G.T., et al., 2007. Mineralization characteristics, discovery and age restriction of Chalapu Hardrock gold deposit, southern Tibet. Earth Science—Journal of China University of Geosciences, 32(2): 185-193 (in Chinese with English abstract).
      Zheng, Y.Y., Zhao, Y.X., Wang, P., et al., 2004. The research of metallogenic regularity and the great progress of ore finding in metallogenic belt in southern Tibet, China. Earth Science—Journal of China University of Geosciences, 29(1): 44, 68 (in Chinese with English abstract).
      Zhu, B.Q., 1998. Theory and application of isotopic system in the earth science. Science Press, Beijing, 224-226 (in Chinese with English abstract).
      陈衍景, 陈华勇, 刘玉琳, 等, 1999. 碰撞造山过程内生矿床成矿作用的研究历史和进展. 科学通报, 44(16): 1681-1689. doi: 10.3321/j.issn:0023-074X.1999.16.001
      陈衍景, 郭光军, 李欣, 1998. 华北克拉通花岗绿岩地体中中生代金矿床的成矿地球动力学背景. 中国科学(D辑), 28(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801006.htm
      付伟, 周永章, 杨志军, 等, 2005. 藏南多层位金锑含矿建造特征及其控矿因素制约. 大地构造与成矿学, 29(3): 321-327. doi: 10.3969/j.issn.1001-1552.2005.03.005
      侯增谦, 李振清, 2004. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He同位素约束. 地质学报, 78(4): 482-493. doi: 10.3321/j.issn:0001-5717.2004.04.007
      侯增谦, 曲晓明, 杨竹森, 等, 2006. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm
      李金高, 2000. 西藏中南部中生代大陆边缘复合式Sedex型锑、铜矿床研究(博士论文). 成都: 成都理工学院.
      李振清, 侯增谦, 聂凤军, 等, 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据. 地质学报, 79(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501007.htm
      孟祥金, 杨竹森, 戚学祥, 等, 2008. 藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应. 岩石学报, 24(7): 1649-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807022.htm
      戚学祥, 李天福, 孟祥金, 等, 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用. 岩石学报, 24(7): 1638-1648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807021.htm
      沈显杰, 张文仁, 杨淑贞, 等, 1990. 青藏热流与地体构造热演化. 北京: 地质出版社, 1-90.
      王旭东, 倪培, 蒋少涌, 等, 2009. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据. 科学通报, 54(21): 3338-3344. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200921022.htm
      杨竹森, 侯增谦, 高伟, 等, 2006. 藏南拆离系锑金成矿特征与成因模式. 地质学报, 80(9): 1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013
      叶先仁, 吴茂炳, 孙明良, 2001. 岩矿样品中稀有气体同位素组成的质谱分析. 岩矿测试, 20(3): 174-178. doi: 10.3969/j.issn.0254-5357.2001.03.003
      尹安, 2001. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长. 地球学报, 22(3): 193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001
      余金杰, 2001. 藏北锑矿带矿床地质特征及与藏南锑矿带粗略对比(博士论文). 北京: 中国地质科学院.
      郑淑蕙, 张知非, 倪葆龄, 等, 1982. 西藏地热水的氢氧稳定同位素研究. 北京大学学报, (1): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198201010.htm
      郑有业, 多吉, 马国桃, 等, 2007. 藏南查拉普岩金矿床特征、发现及时代约束. 地球科学——中国地质大学学报, 32(2): 185-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702004.htm
      郑有业, 赵永鑫, 王苹, 等, 2004. 藏南金锑成矿带成矿规律研究及找矿取得重大进展. 地球科学——中国地质大学学报, 29(1): 44, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401007.htm
      朱炳泉, 1998. 地球科学中同位素体系理论与应用. 北京: 科学出版社, 224-226. doi: 10.3969/j.issn.1001-5965.1998.02.026
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (3633) PDF downloads(99) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return