• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 1
    Jan.  2011
    Turn off MathJax
    Article Contents
    ZHAO Qing-le, WU Huai-chun, LI Hai-yan, ZHANG Shi-hong, 2011. Determination of the Optimal Sampling Interval for Cyclostratigraphic Analysis by Using Sampling Theorem and Accumulation Rates. Earth Science, 36(1): 12-16. doi: 10.3799/dqkx.2011.002
    Citation: ZHAO Qing-le, WU Huai-chun, LI Hai-yan, ZHANG Shi-hong, 2011. Determination of the Optimal Sampling Interval for Cyclostratigraphic Analysis by Using Sampling Theorem and Accumulation Rates. Earth Science, 36(1): 12-16. doi: 10.3799/dqkx.2011.002

    Determination of the Optimal Sampling Interval for Cyclostratigraphic Analysis by Using Sampling Theorem and Accumulation Rates

    doi: 10.3799/dqkx.2011.002
    • Received Date: 2010-09-20
    • Publish Date: 2011-01-01
    • In recent years, cyclostratigraphy has been successfully applied to dating strata and recongnizing the possible astronomical forcing on major geological events. Sampling is one of the most important routines in cyclostratigraphic analysis to get the suitable geophysical or geochemical paleoclimate proxies. However, the workload will be significantly increased and random noises or other non-climatic noises will be introduced if the sampling frequency is too high; on the contrary, a lower sampling frequency may make it difficult to recognize Milankovitch signals in successions. In order to identify an optimal sampling interval, we used theoretic daily insolation data of time intervals of 80-100 Ma and two geological datasets to estimate each power spectra at three sampling intervals (high resolution, one quarter and half of one precession cycle), and then compared corresponding spectra analysis results. As a result, under the condition of satisfying the sampling theorem, sampling interval which equals to half of a precession cycle is the optimal sampling interval for cyclostratigraphic analysis. All Milankovitch signals can be identified and at the same time the workload is the least by using this optimal sampling interval. This interval should be determined according to the mean accumulation rate of the target successions during field sampling.

       

    • loading
    • Heard, T.G., Pickering, K.T., Robinson, S.A., 2008. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites. Earth and Planetary Science Letters, 272(1-2): 130-138. doi: 10.1016/j.epsl.2008.04.025
      Hinnov, L.A., Ogg, J.G., 2007. Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4: 239-251. http://www.researchgate.net/publication/248529016_Cyclostratigraphy_and_the_astronomical_time_scale_Stratigraphy
      Laskar, J., Robutel, P., Joutel, F., et al., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428(1): 261-285.10.1051/0004-6361: 20041335 http://www.researchgate.net/publication/41713454_A_Long-term_Numerical_Solution_for_the_Insolation_Quantities_of_the_Earth
      Lathi, B.P., 1998. Signal processing and linear systems. Berkeley Cambridge Press, Carmichael.
      Li, Y.X., Bralower, T.J., Montañez, I.P., et al., 2008. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma). Earth and Planetary Science Letters, 271(1-4): 88-100. doi: 10.1016/j.epsl.2008.03.055
      Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. doi: 10.1029/2004PA001071
      Locklair, R.E., Sageman, B.B., 2008. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, western Interior, U.S.A. : a Coniacian-Santonian orbital timescale. Earth and Planetary Science Letters, 269(3-4): 540-553. doi: 10.1016/j.epsl.2008.03.021
      Lourens, L.J., Sluijs, A., Kroon, D., et al., 2005. Astronomical pacing of Late Palaeocene to Early Eocene global warming events. Nature, 435: 1083-1087. doi: 10.1038/nature03814
      Machlus, M.L., Olsen, P.E., Christie-Blick, N., et al., 2008. Spectral analysis of the Lower Eocene Wilkins Peak Member, Green River Formation, Wyoming: support for Milankovitch cyclicity. Earth and Planetary Science Letters, 268(1-2): 64-75. doi: 10.1016/j.epsl.2007.12.024
      Weedon, G.P., 2003. Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles. Cambridge University Press, Cambridge.
      Westerhold, T., Rohl, U., Laskar, J., et al., 2007. On the duration of magnetochrons C24r and C25n and the timing of Early Eocene global warming events: implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography, 22: PA2201. doi: 10.1029/2006PA001322
      Wu, H.C., Zhang, S.H., Jiang, G.Q., et al., 2009. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 278(3-4): 308-323. doi: 10.1016/j.epsl.2008.12.016
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (3557) PDF downloads(100) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return