• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 1
    Jan.  2011
    Turn off MathJax
    Article Contents
    ZHAO Xing-min, CHEN Deng-chao, DENG Jian, LI Jin-ping, 2011. Depositional Characteristics and Their Geological Implications of the Permo-Carboniferous Carbonate Rocks from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia, China. Earth Science, 36(1): 62-72. doi: 10.3799/dqkx.2011.007
    Citation: ZHAO Xing-min, CHEN Deng-chao, DENG Jian, LI Jin-ping, 2011. Depositional Characteristics and Their Geological Implications of the Permo-Carboniferous Carbonate Rocks from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia, China. Earth Science, 36(1): 62-72. doi: 10.3799/dqkx.2011.007

    Depositional Characteristics and Their Geological Implications of the Permo-Carboniferous Carbonate Rocks from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia, China

    doi: 10.3799/dqkx.2011.007
    • Received Date: 2010-05-31
    • Publish Date: 2011-01-01
    • A study of depositional characteristics on carbonate rocks of Permo-Carboniferous was carried out by analyzing of petrology and their formation characteristics of carbonate rocks. A lot of fieldworks of the Permo-Carboniferous system in the study area indicate that, the carbonate rocks of Permo-Carboniferous are dominated by calcirudite, crinoidal limestone and micrite with massive structure and graded bedding, volcanic or pyroclastic rocks acting as pedestals and interbeds of the carbonate formations prevail in the area, which show the neritic paleoenvironmental settings of frequent tension-faulting, strong volcanism, steep topography and deeper water during the period of Permo-Carboniferous. The Permo-Carboniferous carbonate rock formations respectively on the pedestals of volcanic or pyroclastic rocks, granulites from braided river or fan deltas, mudstones originated from littoral zone and shelf comprise volcano-elevated carbonate rock formation (VEF), delta-elevated carbonate rock formation (DEF), coast-subsiding carbonate rock formation (CSF) and shelf-shoaling carbonate rock formation (SSF).The formations, all of which were formed by working together of region tectonics and change in sea level, show the distinct mechanism of construction. Among of them, the volcano-elevated formation, with volcanic or pyroclastic interbeds and prevailling in the area, originated from the relative sea level fall driven by volcano eruption resulting from tectonic extension, in the setting of long-term rise in sea level. The delta-elevated formation inferior to the volcano-elevated in development, with granulite interbeds, arose from the relative sea level fall driven by braided river or fan deltas progradation resulting from tectonic uplifting, in the context of long-term rise in sea level. The coast-subsiding and shelf-shoaling formations, subordinate to the former two, came from short-term sea level fall under the circumstances of regional steady tectonics. However, the depositional characteristics of the carbonate rock formations having the differences in lithology, depositional texture, depositional structure and paleo-fauna assemblage, are constrained by depositional environment. Besides, four kinds of deposition models for the four carbonate rock formations above, i.e. volcano-elevated carbonate platform (VEP), delta-elevated carbonate platform (DEP), coast/uplift-subsiding carbonate ramp (CSR) and shelf-shoaling carbonate ramp (SSR), are produced with distinct depositional characteristics respectively. The neritic shelf paleoenvironment of the age is favorable to development of the marine-originated source rocks. As a result of this, the carbonate rocks, the volcanic rocks, pyroclastic rocks, and the granulites of pedestals and interbeds, originated from braided river and fan deltas become the potential reservoirs of Permo-Carboniferous for oil and gas in the area.

       

    • loading
    • Ålvaro, J.J., Ezzouhari, H., Ayad, N.T., et al., 2008. Short-term episodes of carbonate productivity in a Cambrian uplifted riftshoulder of the Coastal Meseta, Morocco. Gondwana Research, 14: 410-428. doi: 10.1016/j.gr.2008.04.003
      Bosence, D., 2005. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sedimentary Geology, 175(1-4): 49-72. doi: 10.1016/j.sedgeo.2004.12.030
      Burchette, T., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79: 3-57. doi: 10.1016/0037-0738(92)9003-A
      Castro, J.M., De Gea, G.A., Ruiz-Ortiz, P.A., et al., 2008. Development of carbonate platforms on an extensional (rifted) margin: the Valanginian-Albian record of the Prebetic of Alicante (SE Spain). Cretaceous Research, 29(5-6): 848-860. doi: 10.1016/j.cretres.2008.05.012
      Cherchi, A., Murru, M., Simone, L., 2000. Miocene carbonate factories in the syn-rift Sardinia Graben sub-basins (Italy). Facies, 43(11), 223-240. doi: 10.1007/BF02536992
      Gao, C.L., Huang, Z.G., Liu, G.X., 2006. Paleo-Asian ocean and Palaeozoic basins in West China. West China Petroleum Geosciences, 2(2): 123-129, 180 (in Chinese with English abstract).
      Gu, J.Y., Ma, F., Ji, L.D., 2009. Types, characteristics and main controlling factors of carbonate platform. Journal of Palaeogeography, 11(1): 21-27 (in Chinese with English abstract). http://www.researchgate.net/publication/285616181_Types_characteristics_and_main_controlling_factors_of_carbonate_platform
      Institute of Geology Chinese Academy of Geological Sciences, Wuhan College of Geosciences, 1985. Atlas of the paleogeography of China. Cartographic Publishing House, Beijing (in Chinese).
      Li, J.Y., Wang, K.Z., Sun, G.H., et al., 2006. Paleozoic active margin slices in the southern Turfan-Hami basin: geological records of subduction of the Paleo-Asian ocean plate in Central Asian regions. Acta Petrologica Sinica, 22(5): 1087-1102 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200605004.htm
      Liao, Z.T., Liu, L.J., 2003. The Carboniferous and Perman of Gansu-Xinjiang border area with remarks on the age of the surrounding strata of the Jinwozi gold ore. Journal of Stratigraphy, 27(3): 163-172 (in Chinese with English abstract).
      Read, J.F., 1985. Carbonate platform facies models. AAPG Bull, 69(1): 1-21. http://aapgbull.geoscienceworld.org/content/69/1/1
      Stratigraphical Lexicon of China Compiling Commission, 2000a. Stratigraphical lexicon of China—Carboniferous system. Geological Publishing House, Beijing (in Chinese).
      Stratigraphical Lexicon of China Compiling Commission, 2000b. Stratigraphical lexicon of China—Permian system. Geological Publishing House, Beijing (in Chinese).
      The Researching Centre of Stratigrapgy and Paleontology, China Geological Survey, 2005. Division and correlation on the srata of all the geological ages in China. Geological Publishing House, Beijing (in Chinese).
      Vigorito, M., Murru, M., Simone, L., 2005. Anatomy of a submarine channel system and related fan in aforamol/rhodalgal carbonate sedimentary setting: a case history from the Miocene syn-rift Sardinia basin, Italy. Sedimentary Geology, 174(1-2): 1-30. doi: 10.1016/j.sedgeo.2004.10.003
      Wilson, J.L., 1975. Carbonate facies in geologic history. Springer Verlag, New York.
      Xie, F.K., 2002. Brief analyses on Carboniferous-Permian hydrocarbon prospective area in the north of China. Journal of Xinjiang Petroledm Institute, 14(3): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSY200203000.htm
      Xu, G.Y., 1993. The tectonic evolution of paleo-Asiatic ocean in the Northeast Asia area. Jilin Geology, 12(3): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ199303000.htm
      Xu, X.Y., He, S.P., Wang, H.L., et al., 2008. An introduction to geology of Northwest China: Qinling, Qilian and Tianshan areas. Science Press, Beijing (in Chinese).
      Zachariah, A.J., Gawthorpe, R., Dreyer, T., 2009. Evolution and strike variability of early post-rift deep-marine depositional systems: Lower to Mid-Cretaceous, North Viking Graben, Norwegian North Sea. Sedimentary Geology, 220 (1-2): 60-76. doi: 10.1016/j.sedgeo.2009.06.006
      高长林, 黄泽光, 刘光祥, 2006. 中国西部古中亚洋与古生代沉积盆地. 中国西部油气地质, 2(2): 123-129, 180.
      顾家裕, 马锋, 季丽丹, 2009. 碳酸盐岩台地类型、特征及控制因素. 古地理学报, 11(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200901006.htm
      李锦轶, 王克卓, 孙桂华, 等, 2006. 东天山吐哈盆地南缘古生代活动陆缘残片: 中亚地区古亚洲洋板块俯冲的地质记录. 岩石学报, 22(5): 1087-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm
      廖卓庭, 刘陆军, 2003. 甘(肃)新(疆)交界地区的石炭系和二叠系——兼论金窝子金矿围岩地层的时代. 地层学杂志, 27(3): 163-172. doi: 10.3969/j.issn.0253-4959.2003.03.001
      谢方克, 2002. 中国北方石炭-二叠系油气远景浅析. 新疆石油学院学报, 14(3): 1-4. doi: 10.3969/j.issn.1673-2677.2002.03.001
      徐公愉, 1993. 东北亚地区古亚洲洋的构造演化特点. 吉林地质, 12(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ199303000.htm
      徐学义, 何世平, 王洪亮, 等, 2008. 中国西北部地质概论——秦岭、祁连、天山地区. 北京: 科学出版社.
      中国地层典编委会, 2000a. 中国地层典——石炭系. 北京: 地质出版社.
      中国地层典编委会, 2000b. 中国地层典——二叠系. 北京: 地质出版社.
      中国地质调查局地层古生物研究中心, 2005. 中国各地质时代地层划分与对比. 北京: 地质出版社.
      中国地质科学院地质研究所, 武汉地质学院, 1985. 中国古地理图集. 北京: 地图出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (3870) PDF downloads(133) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return