• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 1
    Jan.  2011
    Turn off MathJax
    Article Contents
    WANG Yan-xin, MAO Xu-mei, Donald DePaolo, 2011. Nanoscale Fluid-Rock Interaction in CO2 Geological Storage. Earth Science, 36(1): 163-171. doi: 10.3799/dqkx.2011.017
    Citation: WANG Yan-xin, MAO Xu-mei, Donald DePaolo, 2011. Nanoscale Fluid-Rock Interaction in CO2 Geological Storage. Earth Science, 36(1): 163-171. doi: 10.3799/dqkx.2011.017

    Nanoscale Fluid-Rock Interaction in CO2 Geological Storage

    doi: 10.3799/dqkx.2011.017
    • Received Date: 2010-04-09
    • Publish Date: 2011-01-01
    • Continuous growth of atmospheric CO2 concentration believed to be the major reason for "greenhouse effect", has become a global environmental issue in recent years. CO2 reduction is a challenge not only for the survival of human society, but also for the development of geosciences and technology. Although there are a variety of approaches to reduce atmospheric CO2, geological storage is considered as an effective way to reduce CO2. Understanding CO2 fluid-rock interaction is the key to successful geological storage of CO2, because of its effects on CO2 injection efficiency, and storage capacity, efficiency, safety and stability of the reservoir. Nanoscale materials have extraordinary properties with their abnormally huge amount of surface atoms and surface energy. CO2 fluid-rock interaction has multi-scale effect, with much higher rate and efficiency at nanoscale than those at other scales, due to substantial differences in surface atoms and surface energy. Therefore, it is critical to reveal the major factors and mechanisms of nanoscale interaction between CO2 fluid and rock to find some natural cost-effective nano-minerals for capture, storage and conversion of CO2.

       

    • loading
    • Albritton, D.L., Meira Filho, L.G., Cubasch, U., et al., 2001. Climate change 2001: the scientific basis, contributions of working group Ⅰ to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK.
      Bachu, S., 2002. Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1): 87-102. doi: 10.1016/S0196-8904(01)00009-7
      Bachu, S., Gunter, W.D., Perkins, E.H., 1996. Carbon dioxide disposal. In: Hitchon, B., ed., Aquifer disposal of carbon dioxide: hydrodynamic and mineral trapping-proof on concept. Geosciences Publishing Ltd. Sherwood Park, Alberta, Canada.
      Baker, J.C., Bai, G.P., Hamilton, P.J., et al., 1995. Continental scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia. Journal of Sediment Research, 65(3): 522-530. doi: 10.1306/D4268117-2B26-11D7-8648000102C1865D
      Blunt, M., Fayers, F.J., Orr Jr, F.M., 1993. Carbon dioxide in enhanced oil-recovery. Energy Conversion and Management, 34(9-11): 1197-1204. doi: 10.1016/0196-8904(93)90069-M
      Bruant, R.G. Jr., Guswa, A.J., Celia, M.A., et al., 2002. Safe storage of CO2 in deep saline aquifers. Environmental Science and Technology, 36(11): 240-245. doi: 10.1021/es0223325
      Celia, M.A., 2002. How hydrogeology can save the world. Ground Water, 40(2): 113. doi: 10.1111/j.1745-6584.2002.tb02495.x
      Chesworth, W., 1971. Laboratory synthesis of dawsonite and its natural occurrences. National Physical Science, 231: 40-41. doi: 10.1038/physci231040a0
      Chiquet, P., Daridon, J.L., Broseta, D., et al., 2007. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Conversion and Management, 48(3): 736-744. doi: 10.1016/j.enconman.2006.09.011
      Chudaev, O.V., Schartzev, S.L., Chudaeva, V.A., et al., 2003. Hydrogeology and water chemistry of folded areas in the Siberia and the Far East. Vladivostok: Dalnauka.
      Davison, J., Freund, P., Smith, A., 2001. Putting carbon back in the ground. IEA greenhouse gas R & D programme, Cheltenham, United Kingdom.
      Falkowski, P., Scholes, R.J., Boyle, E., et al., 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science, 290(5490): 291-296. doi: 10.1126/science.290.5490.291
      Gale, J., 2004. Geological storage of CO2: what do we know, where are the gaps and what more needs to be done?Energy, 29(9-10): 1329-1338. doi: 10.1016/j.energy.2004.03.068
      Gao, Y.Q., Liu, L., 2007. Basic characteristics of dawsonite-bearing sandstone and its geologic significance. Geological Review, 53(1): 104-110 (in Chinese with English abstract). http://www.researchgate.net/publication/313749939_Basic_characteristics_of_dawsonite-bearing_sandstone_and_its_geologic_significance
      Gentzis, T., 2000. Subsurface sequestration of carbon dioxide—an overview from an Alberta (Canada) perspective. International Journal of Coal Geology, 43(1-4): 287-305. doi: 10.1016/S0166-5162(99)00064-6
      Gherardi, F., Xu, T.F., Pruess, K., 2007. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chemical Geology, 244(1-2): 103-129. doi: 10.1016/j.chemgeo.2007.06.009
      Goldberg, P., Chen, Z.Y., O'Connor, W., et al., 2001. CO2 mineral sequestration studies in US. Journal of Energy and Environmental Research, 1(1): 117-126. http://www.researchgate.net/publication/284697539_CO2_mineral_sequestration_studies_in_US
      Grimston, M.C., Karakoussis, V., Fouquet, R., et al., 2001. The European and global potential of carbon dioxide sequestration in tackling climate change. Climate Policy, 1(2): 155-171. doi: 10.1016/S1469-3062(01)00002-X
      Gu, L.B., Li, Z.P., Hou, X.L., 2008. Existing state about geological storage of carbon dioxide. Geological Science and Technology Information, 27(4): 80-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200804015.htm
      Hendriks, C.A., Blok, K., 1993. Underground storage of carbon dioxide. Energy Conversion and Management, 34(9-11): 949-957. doi: 10.1016/0196-8904(93)90041-8
      Hendriks, C.A., Blok, K., 1995. Underground storage of carbon dioxide. Energy Conversion and Management, 36(6-9): 539-542. doi: 10.1016/0196-8904(95)00062-1
      Hitchon, B., 1996. Aquifer disposal of carbon dioxide: hydrodynamic and mineral trapping-proof of concept. Geoscience Publishing Ltd., Sherwood Park, Alberta.
      Holloway, S., 1997. An overview of the underground disposal of carbon dioxide. Energy Conversion and Management, 38(Suppl. ): 193-198. doi: 10.1016/S0196-8904(96)00268-3
      Holloway, S., 2005. Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option. Energy, 30(11-12): 2318-2333. doi: 10.1016/j.energy.2003.10.023
      Huggins, C.W., Green, T.E., Turner, T.L., 1973. Evaluation of methods for determining nahcolite and dawsonite in oil shales. Report of investigations (United States, Bureau of Mines), 25. http://www.researchgate.net/publication/236363438_Evaluation_of_methods_for_determining_nahcolite_and_dawsonite_in_oil_shales
      IPCC (Intergovernmental Panel on Climate Change), 2005. Special report on carbon dioxide capture and storage. http//www. ipcc. ch.
      Juanes, R., Spiteri, E.J., Orr Jr, F.M., et al., 2006. Impact of relative permeability hysteresis on geological CO2 storage. Water Resources Research, 42, W12418. doi: 10.1029/2005WR004806
      Kaszuba, J.P., Janecky, D.R., Snow, M.G., 2003. Carbon dioxide reaction processes in a model brine aquifer at 200 ℃ and 200 bars: implications for geologic sequestration of carbon. Applied Geochemistry, 18(7): 1065-1080. doi: 10.1016/S0883-2927(02)00239-1
      Kaszuba, J.P., Williams, L.L., Janecky, D.R., et al., 2006. Immiscible CO2-H2O fluids in the shallow crust. Geochemistry Geophysics Geosystems, 7(10), Q100003. doi: 10.1029/2005GC001107
      Ketzer, J.M., Carpentier, B., Le Gallo, Y., et al., 2005. Geological sequestration of CO2 in mature hydrocarbon fields. Basin and reservoir numerical modeling of the forties field, North Sea. Oil & Gas Science and Technology-Rev. IFP, 60(2): 259-273. doi: 10.2516/ogst:2005016
      Kharaka, Y.K., Thordsen, J.J., Hovorka, S.D., et al., 2009. Potential environmental issues of CO2 storage in deep saline aquifers: geochemial results from the Frio-Ⅰ Brine Pilot test, Texas, USA. Applied Geochemistry, 24(6): 1106-1112. doi: 10.1016/j.apgechem.2009.02.010
      Li, X.C., Liu, Y.F., Bai, B., et al., 2006. Ranking and screening of CO2 saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 25(5): 963-968 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=prlinks&retmode=ref&id=21866545
      Liu, L.H., Suto, Y., Bignall, G., et al., 2003. CO2 injection to granite and sandstone in experimental rock/hot water systems. Energy Conversion and Management, 44(9): 1399-1410. doi: 10.1016/S0196-8904(02)00160-7
      Liu, Y.F., Li, X.C., Bai, B., 2005. Preliminary estimation of CO2 storage capacity of coalbeds in China. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2947-2952 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=18046691
      Liu, Y.F., Li, X.C., Fang, Z.M., et al., 2006. Preliminary estimation of CO2 storage capacity in gas fields in China. Rock and Soil Mechanics, 27(12): 2277-2281 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX200612036.htm
      Mao, X.M., Wang, Y.X., Chudaev, O.V., et al., 2009. Geochemical evidences of gas sources of CO2-rich cold springs from Wudalianchi, northeastern China. Journal of Earth Science, 20(6): 959-970. doi: 10.1007/s12583-009-0081-5
      Pruess, K., Spycher, N., 2007. ECO2N—a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Conversion and Management, 48(6): 1761-1767. doi: 10.1016/j.enconman.2007.01.016
      Sun, S., 2006. Geological problems of CO2 underground storage and its significance on mitigation climate change. China Basic Science, 3: 17-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGJB200603007.htm
      Tokunaga, T.K., Wan, J.M., 1997. Water film flow along fracture surfaces of porous rock. Water Resources Research, 33(6): 1287-1295. doi: 10.1029/97WR00473
      Tokunaga, T.K., Wan, J.M., 2001. Approximate boundaries between different flow regimes in fractured rocks. Water Resources Research, 37(8), 2103-2111. doi: 10.1029/2001WR000245
      U.S. Department of Energy, 1999. Carbon sequestration research and development. National Technical Information, 1: 1-24. http://digital.library.unt.edu/ark:/67531/metadc739790/
      Wigley, T.M.L., Richels, R., Edmonds, J.A., 1996. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature, 379: 240-243. doi: 10.1038/379240a0
      Xu, T.F., Apps, J.A., Pruess, K., 2004. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19(6): 917-936. doi: 10.1016/j.apgeochem.2003.11.003
      Xu, T.F., Apps, J.A., Pruess, K., 2005. Mineral sequestration of carbon dioxide in a sandstone-shale system. Chemical Geology, 217(3-4): 295-318. doi: 10.1016/j.chemgeo.2004.12.015
      Zerai, B., Saylor, B.Z., Matisoff, G., 2006. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Applied Geochemistry, 21(2): 223-240. doi: 10.1016/j.apgeochem.2005.11.002
      Zhang, H.T., Wen, D.G., Li, Y.L., et al., 2005. Conditions for CO2 geological sequestration in China and some suggestions. Regional Geology of China, 24(12): 1107-1110 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=20885238
      Zhang, X.F., Wen, Z.Y., Gu, Z.H., et al., 2004. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds. Journal of Solid State Chemistry, 177(3): 849-855. doi: 10.1016/j.jssc.2003.09.019
      高玉巧, 刘立, 2007. 含片钠铝石砂岩的基本特征及地质意义. 地质论评, 53(1): 104-110. doi: 10.3321/j.issn:0371-5736.2007.01.014
      谷丽冰, 李治平, 侯秀林, 2008. 二氧化碳地质埋存研究进展. 地质科技情报, 27(4): 80-84. doi: 10.3969/j.issn.1000-7849.2008.04.014
      李小春, 刘延锋, 白冰, 等, 2006. 中国深部咸水含水层CO2储存优先区域选择. 岩石力学与工程学报, 25(5): 963-968. doi: 10.3321/j.issn:1000-6915.2006.05.015
      刘延锋, 李小春, 白冰, 2005. 中国CO2煤层储存容量初步评价. 岩石力学与工程学报, 24(16): 2947-2952. doi: 10.3321/j.issn:1000-6915.2005.16.023
      刘延锋, 李小春, 方志明, 等, 2006. 中国天然气田CO2储存容量初步评估. 岩土力学, 27(12): 2277-2281. doi: 10.3969/j.issn.1000-7598.2006.12.037
      孙枢, 2006. CO2地下封存的地质学问题及其对减缓气候变化的意义. 中国基础科学, 3: 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200603007.htm
      张洪涛, 文冬光, 李义连, 等, 2005. 中国CO2地质埋存条件分析及有关建议. 地质通报, 24(12): 1107-1110. doi: 10.3969/j.issn.1671-2552.2005.12.004
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(1)  / Tables(2)

      Article views (3881) PDF downloads(208) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return