• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 2
    Mar.  2011
    Turn off MathJax
    Article Contents
    Agterberg Frits, 2011. Principles of Probabilistic Regional Mineral Resource Estimation. Earth Science, 36(2): 189-200. doi: 10.3799/dqkx.2011.020
    Citation: Agterberg Frits, 2011. Principles of Probabilistic Regional Mineral Resource Estimation. Earth Science, 36(2): 189-200. doi: 10.3799/dqkx.2011.020

    Principles of Probabilistic Regional Mineral Resource Estimation

    doi: 10.3799/dqkx.2011.020
    More Information
    • Author Bio:

      Frits Agterberg, E-mail: agterber@nrcan.gc.ca

    • Received Date: 2010-07-15
    • Publish Date: 2011-03-01
    • Five principal sources of uncertainty in quantitative mineral resource estimation are listed and illustrated by means of a simple example (mosaic model) and a case history study for large copper deposits in the Abitibi area of the Canadian Shield. Abitibi copper potential originally was estimated on the basis of 1968 estimates of production and reserves totalling 3.12 Mt Cu. This prognostication now could be evaluated on the basis of 2008 copper production and reserves totalling 9.50 Mt Cu. An earlier hindsight study performed on the basis of 1977 data (totalling 5.23 Mt Cu) showed seven new discoveries occurring either in the immediate vicinities of known deposits or on broad regional copper anomalies predicted from the 1968 inputs. By 1977, the global geographic distribution pattern of large copper deposits in the Abitibi area had stabilized. During the next 30 years, new copper was essentially found close to existing deposits, much of it deeper down in the Earth's crust. In this paper, uncertainties associated with copper ore tonnage are analyzed by comparison of 2008 data with 1968 data using (a) log-log plots of size versus rank, and (b) lognormal QQ-plots. Straight lines fitted by least squares on these plots show that 1968 slopes provide good estimates of 2008 slopes but 1968 intercepts are much less than 2008 intercepts. In each linear log-weight versus log-rank plot, the slope is related to fractal dimension of a Pareto frequency distribution, and in a lognormal QQ-plot it is determined by logarithmic variance. The difference between 2008 and 1968 intercepts represents the increase in copper ore production and reserves from 1968 to 2008. The Pareto model fits actual copper and massive sulphides increase over the past 40 years better than the lognormal frequency distribution model for 10 km×10 km cells on favorable environments in the Abitibi area.

       

    • loading
    • Agterberg, F.P., 1971. A probability index for detecting favourable geological environments. Canadian Institute of Mining and Metallurgy, Special Volume, 12(Decision-Making in the Mineral Industry): 82-91. http://www.researchgate.net/publication/283362735_A_probability_index_for_detecting_favourable_geological_environments
      Agterberg, F.P., 1974. Geomathematics-mathematical background and geo-science applications. Elsevier, Amsterdam, 596.
      Agterberg, F.P., 1989a. LOGDIA-FORTRAN 77 program for logistic regression with diagnostics. Computers & Geosciences, 15(4): 599-614. http://www.sciencedirect.com/science/article/pii/0098300489900265
      Agterberg, F.P., 1989b. Systematic approach to dealing with uncertainty of geoscience information in mineral exploration. Chapter 18, Proceedings 21st APCOM Symposium, Society of Mining Engineers, Littleton, Colorado, 165-178.
      Agterberg, F.P., 1995. Power-laws versus lognormal models in mineral exploration. Proceedings, CAMI'95, 3rd Canadian Conference on Computer Applications in the Mineral Industry, Can. Inst. Mining, Metall., Montréal, Québec, Canada, October 22-25, 1995.
      Agterberg, F.P., 2007. Mixtures of multiplicative cascade models in geochemistry. Nonlinear Processes in Geophysics, 14: 201-209. doi: 10.5194/npg-14-201-2007
      Agterberg, F.P., Chung, C.F., Fabbri, A.G., et al., 1972. Geomathematical evaluation of copper and zinc potential in the Abitibi area on the Canadian Shield. Geological Survey of Canada Paper 71-41, 55.
      Agterberg, F.P., David, M., 1979. Statistical exploration. In: Weiss, A., ed., Computer methods for the 80's. Society of Mining Engineers, New York, 90-115.
      Allais, M., 1957. Method of appraising economic prospects of mining exploration over large territories; Algerian Sahara case study. Management Science, 3: 285-347. doi: 10.1287/mnsc.3.4.285
      Assad, R., Favini, G., 1980. Prévisions de minerai cupro-zincifère dans le Nord-Ouest Québécois. Ministère de l'Energie et des Ressources, Québéc, DVP-670, 59.
      Bardossy, G., Fodor, J., 2004. Evaluation of uncertainties and risks in geology. Springer, Heidelberg, 222.
      Bateman, A.M., 1919. Why ore is where it is. Economic Geology, 14(8): 640-642. doi: 10.2113/gsecongeo.14.8.640
      Bernknopf, R., Wein, A., St-Onge, M., et al., 2007. Analysis of improved government geological map information for mineral exploration incorporating efficiency, productivity, effectiveness and risk considerations. Geological Survey of Canada Bulletin, 593: 45. http://ci.nii.ac.jp/ncid/BB02566502
      Bonham-Carter, G.F., 1994. Geographic information systems for geoscientists: modelling with GIS. Pergamon, Oxford, 398.
      Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry 11. Elsevier, Amsterdam, 368.
      Carranza, E.J.M., 2009. Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35(10): 2032-2046. http://dl.acm.org/citation.cfm?id=1618630
      Cheng, Q., 2007. Singularity of mineralization process and power-law models for mineral resources quantitative assessments. Journal of China University of Geosciences, 18(Special Issue): 245-247. http://www.researchgate.net/publication/291873314_Singularity_of_mineralization_process_and_power-law_models_for_mineral_resources_quantitative_assessments
      Cheng, Q., 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. In: Bonham-Carter, G., Cheng, Q., eds., Progress in geomathematics. Springer, Heidelberg, 195-225.
      de Kemp, 2006.3D interpretive mapping: an extension of GIS technologies for the earth scientist. In: Harris, J.R., ed., GIS for the earth sciences. Geological Association of Canada Special Publication, 44: 591-612.
      Griffiths, J.C., 1966. Exploration for natural resources. Operations Research, 14: 189-209. doi: 10.1287/opre.14.2.189
      Harris, D.P., 1965. An application of multivariate statistical analysis in mineral exploration(PhD thesis). Pennsylvania State University, University Park, Pa. 261.
      Lovejoy, S., Schertzer, D., 2007. Scaling and multifractal fields in the solid earth and topography. Nonlinear Processes in Geophysics, 14: 465-502. doi: 10.5194/npg-14-465-2007
      Lydon, J.W., 2007. An overview of the economic and geological contexts of Canada's major mineral deposit types. In: Goodfellow, W.D., ed., Mineral deposits in Canada. Geological Association of Canada Special Publication, 5: 3-48.
      Mandelbrot, B.B., 1983. The fractal geometry of nature. Freeman, San Francisco, 468.
      Singer, D.A., Menzie, W.D., 2010. Quantitative mineral resource assessments. Oxford University Press, New York, 219.
      Wellmer, F.W., 1983. Neue entwicklungen in der exploration (II): Kosten, Erlöse, Technologien. Erzmetall, 36(3): 124-131.
      Zhao, P., Cheng, Q., Xia, Q.L., 2008. Quantitative prediction for deep mineral exploration. Journal of China University of Geosciences, 19(4): 309-318. doi: 10.1016/S1002-0705(08)60063-1
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (2804) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return