• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 2
    Mar.  2011
    Turn off MathJax
    Article Contents
    CHEN Jian-guo, XIAO Fan, CHANG Tao, 2011. Gravity and Magnetic Anomaly Separation Based on Bidimensional Empirical Mode Decomposition. Earth Science, 36(2): 327-335. doi: 10.3799/dqkx.2011.034
    Citation: CHEN Jian-guo, XIAO Fan, CHANG Tao, 2011. Gravity and Magnetic Anomaly Separation Based on Bidimensional Empirical Mode Decomposition. Earth Science, 36(2): 327-335. doi: 10.3799/dqkx.2011.034

    Gravity and Magnetic Anomaly Separation Based on Bidimensional Empirical Mode Decomposition

    doi: 10.3799/dqkx.2011.034
    • Received Date: 2010-12-10
    • Publish Date: 2011-03-01
    • Geological process often experienced a number of causal or complex genetic stages, which often resulted in original gravity and magnetic anomaly composed of various geological elements including background anomaly, and local anomaly which may be caused by deposits, alternation and concealed rocks, etc., which are associated with mineral exploration and prospecting. It is one of the most difficult issues in mineral prospecting and potential resource assessment as how to separate gravity and magnetic anomaly, which is significant for mineral exploration from original composite anomaly. Empirical mode decomposition (EMD) is considered to be an effective method in superimposed information separation. In this paper, a new bidimensional empirical mode decomposition (BEMD) method is proposed, that is, biharmonic spline interpolation (BSI) instead of general spline interpolation for improving stability. As a case study, gravity and magnetic data in Gejiu, Yunnan, China, have been used to extract local anomaly which could reveal potential information in mineral exploration by multiscale and nonlinear decomposition with BEMD method. It extends the application of empirical mode decomposition.

       

    • loading
    • Abdulhay, E., Gumery, P.Y., Fontecave, J., et al., 2009. Cardiogenic oscillations extraction in inductive plethysmography: ensemble empirical mode decomposition. Embc: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (1-20): 2240-2243. http://europepmc.org/abstract/MED/19965156
      Agarwal, V., Tsoukalas, L.H., 2007. Denoising electrical signal via empirical mode decomposition. 2007 Irep Symposium-Bulk Power System Dynamics and Control-Vii Revitalizing Operational Reliablity, 1-2: 72-77. http://ieeexplore.ieee.org/document/4410516/references
      Battista, B.M., Knapp, C., McGee, T., et al., 2007. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics, 72(2): H29-H37. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=GPYSA7000072000002000H29000001&idtype=cvips&gifs=Yes
      Chen, Q.H., Huang, N.E., Riemenschneider, S., et al., 2006. A B-spline approach for empirical mode decompositions. Advances in Computational Mathematics, 4(1-4): 171-195. http://www.ams.org/mathscinet-getitem?mr=2222267
      Chen, Z.J., 2007. Multifractal theory based local singularity analysis method and its application in spatial information extraction for mineral exploration (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Cheng, Q.M., 1995. The perimeter-area fractal model and its application in geology. Mathematical Geology, 27(7): 64-77. doi: 10.1007/BF02083568/metrics
      Cheng, Q.M., 1999. Spatial and scaling modeling for geochemical anomaly separation. Journal of Exploration Geochemistry, 65(3): 175-194. doi: 10.1016/S0375-6742(99)00028-X
      Cheng, Q.M., 2001. Multifractal and geostatistic methods for characterizing local structure and singularity properties of exploration geochemical anomalies. Earth ScienceJournal of China University of Geosciences, 26(2): 161-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200102012.htm
      Cheng, Q.M., 2003. Non-linear mineralization model and information processing methods for prediction of unconventional mineral resources. Earth ScienceJournal of China University of Geosciences, 28(4): 1-10 (in Chinese with English abstract). http://www.researchgate.net/publication/288010626_No-linear_mineralization_model_and_information_processing_methods_for_prediction_of_unconventional_mineral_resources
      Cheng, Q.M., 2004. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36(3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a
      Cheng, Q.M., 2006. Singularity-generalized self-similarity-fractal spectrum (3S) models. Earth ScienceJournal of China University of Geosciences, 31(3): 337-348 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200603009
      Cheng, Q.M., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
      Cheng, Q.M., 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40(5): 503-532. doi: 10.1007/s11004-008-9172-6
      Cheng, Q.M., Agterberg, F.P., 2009. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, 35(2): 234-244. http://www.sciencedirect.com/science/article/pii/S0098300408002203
      Cheng, Q.M., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      Cheng, Q.M., Zhao, P.D., Chen, J.G., et al., 2009. Application of singularity theory in prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: weak information extraction and mixing information decomposition. Earth ScienceJournal of China University of Geosciences, 34(2): 232-242 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.021
      Echeverria, J.C., Crowe, J.A., Woolfson, M.S., et al., 2001. Application of empirical mode decomposition to heart rate variability analysis. Medical & Biological Engineering & Computing, 39(4): 471-479. http://www.ncbi.nlm.nih.gov/pubmed/11523737
      Gong, Z.Q., Zou, M.W., Gao, X.Q., et al., 2005. On the difference between empirical mode decomposition and wavelet decomposition in the nonlinear time series. Acta Physica Sinica, 54(8): 3947-3957. doi: 10.7498/aps.54.3947
      Heslop, D., Dobeneck, T.V., Höcker, M., 2007. Using non-negative matrix factorization in the "unmixing" of diffuse reflectance spectra. Marine Geology, 241(1-4): 63-78. doi: 10.1016/j.margeo.2007.03.004
      Huang, J.N., Zhao, B.B., Chen, Y.Q., et al., 2010. Bidimensional empirical mode decomposition (BEMD) for extraction of gravity anomalies associated with gold mineralization in the Tongshi gold field, western Shandong uplifted block, eastern China. Computers & Geosciences, 36(7): 987-995.
      Huang, N.E., 2000. The age of large amplitude coastal seiches on the Caribbean coast of Puerto Rice. Physical Oceanography, 30(8): 405-409.
      Huang, N.E., 2006. Beyond the Fourier transform: coping with nonlinear, nonstationary time series. NASA Goddard Space Flight Center, USA, 28. http://www.Physiconet.org/events/hrv-2006/huang.pdf (accessed 26 May,2006). http://www.Physiconet.org/events/hrv-2006/huang.pdf
      Huang, N.E., Shen, Z., Long, S.R., 1999. A new view of nonlinear water waves: the Hilbert spectrum. Annual Review of Fluid Mechanics, 31: 417-457. doi: 10.1146/annurev.fluid.31.1.417
      Huang, N.E., Shen, Z., Long, S.R., et al., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
      Huang, N.E., Wu, M.L., Q, W.D., et al., 2003. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry, 19: 245-268. doi: 10.1002/asmb.501
      Li, Q.M., Cheng, Q.M., 2004. Fractal singular value (Eginvalue) decomposition method for geophysical and geochemical anomaly reconstruction. Earth ScienceJournal of China University of Geosciences, 29(1): 109-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401019.htm
      Liu, Z.X., Peng, S.L., 2005. Directional empirical mode decomposition and it's application in texture segmentation. Science in China (Ser. E), 35(2): 113-123(in Chinese).
      Long, S.R., 2001. Use of the empirical mode decomposition and Hilbert-Huang transform in image analysis. World Multiconference on Systemics, Cybernetics and Informatics, (Xvii): 67-71.
      Nunes, J.C., Bouaoune, Y., Delechelle, E., et al., 2003a. Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing, 21(12): 1019-1026. doi: 10.1016/S0262-8856(03)00094-5
      Nunes, J.C., Niang, O., Bouaoune, Y., et al., 2003b. Bidimensional empirical mode decomposition modified for texture analysis. Image Analysis, Proceedings, 2749: 171-177. doi: 10.1007%2F3-540-45103-X_24
      Nunes, J.C., Guyot, S., Delechelle, E., 2005. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision and Applications, 16(3): 177-188. doi: 10.1007/s00138-004-0170-5
      Oladosu, G., 2009. Identifying the oil price-macroeconomy relationship: an empirical mode decomposition analysis of US data. Energy Policy, 37(12): 5417-5426. doi: 10.1016/j.enpol.2009.08.002
      Pines, D., Salvino, L., 2002. Health monitoring of one dimensional structures using empirical mode decomposition and the Hilbert-Huang transform. Smart Structures and Materials 2002: Smart Structures and Integrated Systems, 4701: 127-143. doi: 10.1117/12.474653
      Pines, D., Salvino, L., 2006. Structural health monitoring using empirical mode decomposition and the Hilbert phase. Journal of Sound and Vibration, 294(1-2): 97-124. doi: 10.1016/j.jsv.2005.10.024
      Sandwell, D.T., 1987. Biharmonic spline interpolation of geos-3 and seasat altimeter data. Geophysical Research Letters, 14(2): 139-142. doi: 10.1029/GL014i002p00139
      Sinclair, S., Pegram, G.G.S., 2005. Empirical mode decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting. Hydrology and Earth System Sciences, 9(3): 127-137. doi: 10.5194/hess-9-127-2005
      Song, L.X., Gao, F.J., Xi, Z.H., 2008. Compared and improved research of bidimensional empirical mode decomposition method. Journal of Electronics & Information Technology, 30(12): 2890-2893 (in Chinese with English abstract). http://www.oalib.com/paper/1551385
      Su, S., Mcardle, B.H., Rodgers, K.A., et al., 2003. Wavelet analysis of variations in geochemical and microfossil data across the Cretaceous/Tertiary boundary at Flaxbourne River, New Zealand. New Zealand Journal of Geology & Geophysics, 46(2): 199-208. http://www.informaworld.com/index/927144836.pdf
      Vincent, H.T., Hu, S.L.J., Hou, Z., 1999. Damage detection using empirical mode decomposition method and a comparison with wavelet analysis. Structural Health Montoring, 2000: 891-900.
      Xia, J.Z., 2010. An application of biharmonic spline interpolation to integration of logging and seismic data. Oil & Gas Geology, 31(2): 244-249 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201002020.htm
      Xiao, F., Chen, J.G., 2007. Two mixed total screening MATLAB program based on normal probability paper principle. Proceedings of the IAMG'07: Geomathematics and GIS Analysis of Resources, Environment and Hazards, 2007: 464-468. http://d.g.wanfangdata.com.cn/Conference_WFHYXW175718.aspx
      Xiong, G.C., Shi, S.T., 1994. Physico-geologic model of the Gejiu tin district and its application. Geological Review, 40(01): 19-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199401002.htm
      Yang, W.X., Tavner, P.J., 2009. Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery. Journal of Sound and Vibration, 321(3-5): 1144-1170. doi: 10.1016/j.jsv.2008.10.012
      Yue, H.Y., Guo, H.D., Han, C.M., et al., 2001. A SAR interferogram filter based on the empirical mode decomposition method. Igarss 2001: Scanning the Present and Resolving the Future, (1-7): 2061-2063. http://ieeexplore.ieee.org/document/977903/
      Zhang, L.P., Ruan, T.J., 2000. Application of wavelet analysis to interference elimination for geochemical hydrocarbon exploration. Journal of China University of Geosciences, 11(1): 89-91. http://qikan.cqvip.com/Qikan/Article/Detail?id=4000690818
      Zhao, P.D., 1982. On the mathematical characteristics of geological bodies. Earth ScienceJournal of China University of Geosciences, 1: 145-155 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx198201014.htm
      Zhao, P.D., 2002. "Three-component" quantitative resource prediction and assessments: theory and practice of digital mineral prospecting. Earth ScienceJournal of China University of Geosciences, 27(5): 482-489 (in Chinese with English abstract). http://www.researchgate.net/publication/285440866_Three-Component_Quantitative_resource_prediction_and_assessments_Theory_and_practice_of_digital_mineral_prospecting
      Zhao, P.D., Hu, W.L., Li, Z.J., 1994. Statistical prediction of mineral deposit. Geological Publishing House, Beijing (in Chinese).
      Zhao, P.D., Meng, X.G., 1992. Quantification and geosciences. Earth ScienceJournal of China University of Geosciences, 17: 51-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX1992S1008.htm
      Zhao, Y.T., Yan, J.C., 2008. Filtering of electrochemical transients by empirical mode decomposition method. Acta Physico-Chimica Sinica, 24(1): 85-90. doi: 10.3866/PKU.WHXB20080115
      Zhou, W.N., Zeng, Z.F., Du, X.J., 2010. Gravity anomaly separation based on empirical mode decomposition. Global Geology, 29(3): 495-502 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201003021.htm
      陈志军, 2007. 多重分形局部奇异性分析方法在及其在矿产资源信息提取中的应用(博士学位论文). 武汉: 中国地质大学.
      成秋明, 2001. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析. 地球科学——中国地质大学学报, 26(2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102012.htm
      成秋明, 2003. 非线性矿床模型与非常规矿产资源评价. 地球科学——中国地质大学学报, 28(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304015.htm
      成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学——中国地质大学学报, 31(3): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603008.htm
      成秋明, 赵鹏大, 陈建国, 等, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学——中国地质大学学报, 34(2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902001.htm
      李庆谋, 成秋明, 2004. 分形奇异(特征)值分解方法与地球物理和地球化学异常重建. 地球科学——中国地质大学报, 29(1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401019.htm
      刘忠轩, 彭思龙, 2005. 方向EMD分解与其在纹理分割中的应用. 中国科学(E辑), 35(2): 113-123. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200502000.htm
      宋立新, 高凤娇, 郗朝晖, 2008. 二维EMD分解方法的比较与改进. 电子与信息学报, 30(12): 2890-2893. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200812023.htm
      夏吉庄, 2010. 双调和样条内插方法在测井和地震资料整合中的应用. 石油与天然地质, 31(2): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201002020.htm
      熊光楚, 石盛滕, 1994. 个旧锡矿区物理-地质模型及应用效果. 地质论评, 40(01): 19-27. doi: 10.3321/j.issn:0371-5736.1994.01.003
      赵鹏大, 1982. 试论地质体的数学特征. 地球科学——中国地质大学学报, 1: 145-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198201014.htm
      赵鹏大, 2002. "三联式"资源定量预测与评价——数字找矿理论与实践探讨. 地球科学——中国地质大学学报, 27(5): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205001.htm
      赵鹏大, 胡旺亮, 李紫金, 1994. 矿床统计预测. 北京: 地质出版社.
      赵鹏大, 孟宪国. 1992. 地质学的定量化问题. 地球科学——中国地质大学学报, 17: 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1992S1008.htm
      周文纳, 曾昭发, 杜晓娟等, 2010. 基于经验模态分解的重力异常分离. 世界地质, 29(3): 495-502. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201003021.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (3703) PDF downloads(129) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return