• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 2
    Mar.  2011
    Turn off MathJax
    Article Contents
    MA Hong-chao, 2011. Review on Applications of LiDAR Mapping Technology to Geosciences. Earth Science, 36(2): 347-354. doi: 10.3799/dqkx.2011.037
    Citation: MA Hong-chao, 2011. Review on Applications of LiDAR Mapping Technology to Geosciences. Earth Science, 36(2): 347-354. doi: 10.3799/dqkx.2011.037

    Review on Applications of LiDAR Mapping Technology to Geosciences

    doi: 10.3799/dqkx.2011.037
    • Received Date: 2010-12-20
      Available Online: 2021-11-10
    • Publish Date: 2011-03-01
    • This paper reviews the applications of laser mapping technology in the fields of global glacier analysis and monitoring, local and large scale faults extraction, landslide mapping and susceptibility assessment, shoreline detection and coastal erosion monitoring. As a new type of air-or-space borne remote sensing sensor, the application of laser mapping technology (including spaceborne, airborne, vehicle-based and terrestrial) has been extended from conventional surveying and precision surveying to such various fields as cultural heritage protection. The four application fields reviewed in the paper are four major research topics that are mostly related to human-environmental interaction. The review conclusion shows that the laser mapping technology should be or is becoming an indispensable tool for above mentioned issues.

       

    • loading
    • Arrowsmith, J.R., Zielke, O., 2009. Tectonic geomorphology of the San Andreas fault zone from resolution topography: an example from the Cholame segment. Geomorphology, 113: 10-81. doi: 10.1016/j.geomorph.2009.01.002
      Axelsson, P., 1999. Processing of laser scanner data—algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 54: 138-147. doi: 10.1016/S0924-2716(99)00008-8
      Baltsavias, E.P., 1999. A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry & Remote Sensing, 54: 83-94. doi: 10.1016/S0924-2716(99)00014-3
      Begg, J.G., Mouslopoulou, V., 2010. Analysis of Late Holocene faulting within an active rift using LiDAR, Taupo rift, New Zealand. Journal of Volcanology and Geothermal Research, 190: 152-167. doi: 10.1016/j.jvolgeores.2009.06.001
      Bindschadler, R., Choi, H., 2005. Detecting and measuring new snow accumulation on ice sheets by satellite remote sensing. Remote Sensing of Environment, 98: 388-402. doi: 10.1016/j.rse.2005.07.04
      Boak, E.H., Turner, I.L., 2005. Shoreline definition and detection: a review. Journal of Coastal Research, 21(4): 688-703. doi: 10.2112/03-0071.1
      Booth, A.M., Roering, J.J., Perron, J.T., 2009. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109: 132-147. doi: 10.1016/j.geomorph.2009.02.027
      Chang, K.J., Taboada, A., Chan, Y.C., 2005. Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake. Geomorphology, 71: 293-309. doi: 10.1016/j.geomorph.2005.02.004
      Chust, G., Galparsoro, I., Borja, A., et al., 2008. Coastal and estuarine habitat mapping, using LiDAR height and intensity and multi-spectral imagery. Estuarine, Coastal and Shelf Science, 78(4): 633-643. doi: 10.1016/j.ecss.2008.02.003
      Chust, G., Grande, M., Galparsoro, I., et al., 2010. Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: a case study within a Basque estuary. Estuarine, Coastal and Shelf Science, 89(3): 200-213. doi: 10.1016/j.ecss.2010.07.002
      Dietrich, W.E., Bellugi, D., de Asua, R.R., 2001. Validation of the shallow landslide model, SHALSTAB, for forest management. In : Wigmosta, M.S., Burges, S.J., eds., Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas. American Geophysical Union Water Science and Application, 2: 195-227.
      Fricker, H.A., Padman, L., 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 33. doi: 10.1029/2006GL026907
      Glenn, N.F., Streutker, D.R., Chadwick D.J., et al., 2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73: 131-148. doi: 10.1016/j.geomorph.2005.07.006
      Harding, D.J., Berghoff, G.S., 2000. Fault scarp detection beneath dense vegetation cover: airborne LiDAR mapping of the Seattle fault zone, Bainbridge Island, Washington State. In: Proceedings of the American Society of Photogrammetry and Remote Sensing Annual Conference, Washington, D.C. .
      Harpold, R., Urban, T., Webb, C., Schutz, B., 2007. Assessment of ICESat repeat track estimation techniques for polar elevation change detection. American Geophysical Union, Fall Meeting 2007. http://adsabs.harvard.edu/abs/2007AGUFM.C23A0943H
      Haugerud, R.A., Harding, D.J., Johnson, S.Y., et al., 2003. High-resolution LiDAR topography of the Puget Lowland, Washington. GSA TODAY. http://www.researchgate.net/publication/250948935_High-Resolution_Lidar_Topography_of_the_Puget_Lowland_Washington_-A_Bonanza_for_Earth_Science
      Hudnut, K.W., Borsa, A., Glennie, C., et al., 2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, Earthquake (Mw 7.1) from airborne laser swath mapping. Bulletin of the Seismological Society of America, 92(4): 1570-1576. doi: 10.1785/0120000934
      Inada, R., Takagi, M., 2010. Method of landslide measurement by ground based LiDAR. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII(Part 8). http://www.researchgate.net/publication/264855391_METHOD_OF_LANDSLIDE_MEASUREMENT_BY_GROUND_BASED_LIDAR
      Liu, H., Sherman, D., Gu, S., 2007. Automated extraction of shorelines from airborne light detection and ranging data and accuracy assessment based on Monte Carlo simulation. Journal of Coastal Research, 23(6): 1359-1369. doi: 10.2112/05-0580.1
      Ma, H.C., Yao, C.J., Zhang, S.D., 2008. Some technical issues of airborne LiDAR system applied to Wenchuan Earthquake relief works. Journal of Remote Sensing, (6): 925-932 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXB200806014.htm
      Muskett, R.R., Lingle, S.C., 2008. Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry. Earth and Planetary Science Letters, 265: 345-359. doi: 10.1016/j.epsl.2007.10.012
      Nguyen, A.T., Herring, T.A., 2005. Analysis of ICESat Data using Kalman filter and Kriging to study surface height changes and surface characteristics in East Antarctica. Geophysical Research Letters, 32. doi: 10.1029/2005GL024272
      Robertson, W.V., Whitman, D., Zhang, K.Q., et al., 2004. Mapping shoreline position using airborne laser altimetry. Journal of Coastal Research, 26(4): 884-892. doi: 10.2112/1551-5036(2004)20[884:MSPUAL]2.0.CO;2
      Robertson, W.V., Zhang, K.Q., Whitman, D., 2007. Hurricane-induced beach change derived from airborne laser measurements near Panama City, Florida. Marine Geology, 237(3-4): 191-205. doi: 10.1016/j.margeo.2006.11.003
      Roering, J.J., Stimely, L.L., Mackey, B.H., et al., 2009. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophysical Research Letters, 36. doi: 10.1029/2009GL040374
      Ruggiero, P., 2000. Beach monitoring in the Columbia River littoral cell, 1997-2000. Washington State Department of Ecology, Coastal Monitoring & Analysis Program, Publication No. 00-06-26, 112.
      Schulz, W.H., 2007. Landslide susceptibility revealed by LiDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89: 67-87. doi: 10.1016/j.enggeo.206.09.019
      Shen, J.S., Zhai, J.S., Guo, H.T., 2009. Study on coastline extraction technology. Hydrographic Surveying and Charting, 29(6): 72-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYCH200906022.htm
      Shrestha, R.L., Carter, W.E., Sartori, M., et al., 2005. Airborne laser swath mapping: Quantifying changes in sandy beaches over time scales of weeks to years. ISPRS Journal of Photogrammetry and Remote Sensing, 59(4): 222-232. doi: 10.1016/j.isprsjprs.2005.02.009
      Slobbe, D.C., Lindenbergh, R.C., 2008. Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints. Remote Sensing of Environment, 112: 4204-4213. doi: 10.1016/j.rse.2008.07.004
      Smith, B.E., Bentley, C.R., Raymond, C.F., 2005. Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers. Geophysical Research Letters, 32. doi: 10.1029/2005GL024365
      Stockdon, H.F., Sallenger, A.H., List, J.H., et al., 2002. Estimation of shoreline position and change using airborne topographic LiDAR data. Journal of Coastal Research, 18(3): 502-513. http://theowl.fsu.edu/jcr/article/download/81307/78447
      Strurzenegger, M., Stead, D., Froese, C., et al., 2007. Ground based and airborne LiDAR for structural mapping of a large landslide: the Frank Slide. Proceedings of the 1st Canada-US rock mechanics Symposium, 27-31. http://www.researchgate.net/publication/285670157_Ground-based_and_airborne_LiDAR_for_structural_mapping_of_the_Frank_Slide
      Szekely, B., Zamolyi, A., Draganits, E., et al., 2009. Geomorphic expression of neotectonic activity in a low relief area in an airborne laser scanning DTM: a case study of the Little Hungarian Plain (Pannonian basin). Tectonophysics, 474: 353-366. doi: 10.1016/j.tecto.2008.11.024
      Wechsler, N., Rockwell, T.K., YehudaBen-Zion, 2009. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jancinto fault. Geomorphology, 113: 82-96. doi: 10.1016/j.geomorph.2009.06.007
      Wehr, A., Lohr, U., 1999. Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54: 68-82. doi: 10.1016/S0924-2716(99)00011-8
      Wesche, C., Riedel, S., Steinhage, D., 2009. Precise surface topography of the grounded ice ridges at the Ekstromisen, Antarctica, based on several geophysical data sets. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4): 381-386. doi: 10.1016/j.isprsjprs.2009.01.005
      Woolard, J.W., Colby, J.D., 2002. Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LiDAR: Cape Hatteras, North Carolina. Geomorphology, 48(1-3): 269-287. doi: 10.1016/S0169-555X(02)00185-X
      Xie, H., Ackley, S.F., 2010. Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep-Sea Research, doi: 10.1016/j.dsr2.2010.10.038
      Yamamoto, K., Fukudo, Y., Doi, K., et al., 2008. Interpretation of the GRACE-derived mass trend in Enderby Land, Antarctica. Polar Science, 2: 267-276. doi: 10.1016/j.polar.2008.10.001
      Yamanokuchi, T., Doi, K., 2010. Combined use of InSAR and GLAS data to produce an accurate DEM of the Antarctic ice sheet: example from the Breivikae Asuka station area. Polar Science, 4: 1-17. doi: 10.1016/j.polar.2009.12.002
      Zhang, Y.H., 1996. Erosion hazards and their control in coastal regions of China. Journal of Catastrophology, 11(3): 15-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHXU603.003.htm
      马洪超, 姚春静, 张生德, 2008. 机载激光雷达在汶川地震应急响应中的若干关键问题探讨. 遥感学报, (6): 925-932. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806014.htm
      申家双, 翟京生, 郭海涛, 2009. 海岸线提取技术研究. 海洋测绘, 29(6): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH200906022.htm
      张裕华, 1996. 中国海岸侵蚀危害及其防治. 灾害学, 11(3): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU603.003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)  / Tables(1)

      Article views (616) PDF downloads(19) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return