• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 3
    May  2011
    Turn off MathJax
    Article Contents
    CHAI Xin-na, LI Ming, JIN Zhen-min, GAO Shan, 2011. Occurrence and Formation of Phosphorus in Late Devonian Phosphate-Bearing Ooidal Ironstones from Western Hubei, China. Earth Science, 36(3): 440-454. doi: 10.3799/dqkx.2011.047
    Citation: CHAI Xin-na, LI Ming, JIN Zhen-min, GAO Shan, 2011. Occurrence and Formation of Phosphorus in Late Devonian Phosphate-Bearing Ooidal Ironstones from Western Hubei, China. Earth Science, 36(3): 440-454. doi: 10.3799/dqkx.2011.047

    Occurrence and Formation of Phosphorus in Late Devonian Phosphate-Bearing Ooidal Ironstones from Western Hubei, China

    doi: 10.3799/dqkx.2011.047
    • Received Date: 2011-02-05
    • Publish Date: 2011-05-01
    • Ningxiang-type iron deposits are widely distributed in Devonian strata in southern China with huge reserves, but exploitation of this type iron deposits have been severely circumscribed due to their high phosphorus content. Occurrences of phosphorus are theoretical foundations for dephosphorization researches, which should be solved first. Preliminary researches of occurrence, formation and origin of phosphorus in Late Devonian phosphate-bearing ooidal ironstones from Western Hubei in China have been done in this study by means of whole-rock element analysis (wet chemical whole-rock analysis, inductively coupled plasma mass spectrometry), mineral phase analysis (scanning electron microscopy, X-ray diffraction analysis) and in-situ element analysis (electron microprobe analysis, laser ablation inductively coupled plasma mass spectrometry). Phosphorous-bearing minerals are mainly carbonate fluorapatite in ironstone and there are three formations, including prismatic apatite crystal particles (more than 65% particle sizes < 20 μm), apatite intraclasts (very coarse and coarse sand size level particles concentrate in lenticular and banded beddings), and layered gelatinous apatite entangled by hematite in ooids (layer thickness are of 10-50 μm). Apatite crystals recrystallized from pore water, and might have originated from phosphorite in late Sinian strata. Apatite intraclasts were the product of in-situ chemical deposition in seawater, and might have come from land around paleo-ocean. Gelatinous apatite also was in-situ chemical deposition product, but formed at iron deposition position and mixed or mutual parcel with chamosite and formed ooids.

       

    • loading
    • Baioumy, H.M., 2007. Iron-phosphorus relationship in the iron and phosphorite ores of Egypt. Chemie der Erde-Geochemistry, 67: 229-239. doi: 10.1016/j.chemer.2004.10.002
      Becker, J.S., Matusch, A., Depboylu, C., et al., 2007. Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs-genus arion) measured by laser ablation inductively coupled plasma mass spectrometry. Analytical Chemistry, 79: 6074-6080. doi: 10.1021/ac0700528
      Bhattacharyya, D.P., 1989. Concentrated and lean oolites: examples from the Nubia Formation at Aswan, Egypt, and significance of the oolite types in ironstone genesis. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstones. Geological Society Special Publication, 46: 93-103.
      Bhattacharyya, D.P., Kakimoto, P., 1982. Origin of ferriferous ooids: an SEM study of ironstone ooids and bauxite pisiods. Joumal of Sedimentary Petrology, 52(3): 849-857. http://www.researchgate.net/publication/282542526_Origin_of_Ferriferous_Ooids_An_Sem_Study_of_Ironstone_Ooids_and_Bauxite_Pisoids
      Cotter, E., 1992. Diagenetic alteration of chamositic clay minerals to ferric oxide in oolitic ironstone. Joumal of Sedimentary Petrology, 62(1): 54-60.
      Franceschelli, M., Puxeddu, M., Carta, M., 2000. Mineralogy and geochemistry of Late Ordovician phosphate-bearing oolitic ironstones from NW Sardinia, Italy. Mineralogy and Petrology, 69: 267-293. doi: 10.1007/s007100070024
      Gagnon, J.E., Fryer, B.J., Samson, I.M., et al., 2008. Quantitative analysis of silicate certified reference materials by LA-ICP-MS with and without an internal standard. Journal of Analytical Atomic Spectrometry, 23: 1529-1537. doi: 10.1039/b801807n
      Garzanti, E., Haas, R., Jadoul, F., 1989. Ironstones in the Mesozoic passive margin sequence of the Tethys Himalaya (Zanskar, northern India): sedimentology and metamorphism. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 229-244.
      Gehring, A.U., 1989. The formation of goethitic ooids in condensed Jurassic deposits in northern Switzerland. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 133-139.
      Guillong, M., Hametner, K., Reusser, E., et al., 2005. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation inductively coupled plasma mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostandards and Geoanalytical Research, 29: 315-331. doi: 10.1111/j.1751-908X.2005.tb00903.x
      Gunnars, A., Blomqvist, S., Martinsson, C., 2004. Inorganic formation of apatite in brackish seawater from the Baltic Sea: an experimental approach. Marine Chemistry, 91: 15-26. doi: 10.1016/j.marchem.2004.01.008
      Günther, D., Heinrich, C.A., 1999. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. Journal of Analytical Atomic Spectrometry, 14: 1369-1374. doi: 10.1039/A901649J
      Halicz, L., Günther, D., 2004. Quantitative analysis of silicates using LA-ICP-MS with liquid calibration. Journal of Analytical Atomic Spectrometry, 19: 1539-1545. doi: 10.1039/b410132
      Heikoop, J.M., Tsujita, C.J., Risk, M.J., et al., 1996. Modorn iron ooids from a shallow-marine volcanic setting: mahengetang, Indonesia. Geology, 24(8): 759-762. doi: 10.1130/0091-7613(1996)024<0759:MIOFAS>2.3.CO;2
      Hou, H.F., Wang, S.T., 1985. Devonian palaeogeography of China. Acta Palaeontologica, 24(2): 186-193 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX198502005.htm
      Hren, M.T., Lowe, D.R., Tice, M.M., et al., 2006. Stable isotope and rare earth element evidence for recent ironstone pods within the Archean Barberton greenstone belt, South Africa. Geochimica et Cosmochimica Acta, 70: 1457-1470. doi: 10.1016/j.gca.205.11.016
      Hu, N., Xu, A.W., 1998. Horizon, lithofacies and genesis of the Ningxiang-type iron deposit in western Hubei, China. Contributions to Geology and Mineral Resources Research, 13(1): 40-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK801.004.htm
      Hu, S.H., Zhang, S.C., Hu, Z.C., et al., 2007. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies. Analytical Chemistry, 79: 923-929. doi: 10.1021/ac061269p
      Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal enhancement in Laser Ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23: 1093-1101. doi: 10.1039/b804760j
      Ilyin, A.V., 1998. Rare-earth geochemistry of 'old' phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chemical Geology, 144: 243-256. doi: 10.1016/S0009-2541(97)00134-4
      Kearsley, A.T., 1989. Iron-rich ooids, their mineralogy and microfabric: clues to their origin and evolution. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 141-164.
      Leach, A.M., Hieftje, G.M., 2000. Methods for shot-to-shot normalization in laser ablation with an inductively coupled plasma time-of-flight mass spectrometer. Journal of Analytical Atomic Spectrometry, 15: 1121-1124. doi: 10.1039/b001968m
      Leach, A.M., Hieftje, G.M., 2001. Standardless semiquantitative analysis of metals using single-shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Analytical Chemistry, 73: 2959-2967. doi: 10.1021/ac001272n
      Leach, A.M., Hieftje, G.M., 2002. Identification of alloys using single shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 17: 852-857. doi: 10.1039/b203523n
      Lécuyer, C., Grandjean, P., Barrat, J., et al., 1998. δ18O and REE contents of phosphatic brachiopods: a comparison between modern and Lower Paleozoic populations. Geochimica et Cosmochimica Acta, 62(14): 2429-2436. doi: 10.1016/S0016-7037(98)00170-7
      Lécuyer, P.G., Feist, R., Albarède, F., 1993. Rare earth elements in old biogenic apatites. Geochimica et Cosmochimica Acta, 57: 2507-2514. doi: 10.1016/0016-7037(93)90413Q
      Li, M., Hu, Z.C., Gao, S., et al., 2011. Direct quantitative determination of trace elements in fine-grained whole rocks by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 35: 7-22. doi: 10.1111/j.1751-908X.2010.00028.x
      Liao, S.F., 1993. Phanerozoic oolitic ironstone in China. Sedimentary Geology and Tethyan Geology, 13(3): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199303000.htm
      Liao, S.F., Wei, L.H., Liu, C.D., et al., 1993. Sedimentary environments and origin of the Devonian oolitic ironstones in China. Acta Sedimentologica Sinica, 11(1): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199301010.htm
      Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984. Elemental Geochemistry. Science Press, Beijing (in Chinese).
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537-571. doi: 10.1093/petrology/egp082
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133-153. doi: 10.1016/j.chemgeo.2007.10.016
      Liu, Y.X., Ge, D.Y., Zeng, Y.F., et al., 1994. The enrichment characteristics of apatite from phosphorites in East Yunnan. Journal of Mineralogy and Petrology, 14(4): 17-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS404.002.htm
      Mclennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200. http://www.researchgate.net/publication/313503357_Rare_earth_elements_in_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes
      Mücke, A., 2000. Environmental conditions in the Late Cretaceous African Tethys: conclusions from a microscopic-microchemical study of ooidal ironstones from Egypt, Sudan and Nigeria. Journal of African Earth Sciences, 30(1): 25-46. doi: 10.1016/S0899-5362(00)00006-3
      Mücke, A., 2006. Chamosite, siderite and the environmental conditions of their formation in chamosite-type Phanerozoic ooidal ironstones. Ore Geology Reviews, 28: 235-249. doi: 10.1016/j.oregeorev.2005.03.004
      Mücke, A., Farshad, F., 2005. Whole-rock and mineralogical composition of Phanerozoic ooidal ironstones: comparison and differentiation of types and subtypes. Ore Geology Reviews, 26: 227-262. doi: 10.1016/j.oregeorev.2004.08.001
      Pisonero, J., Kroslakova, I., Günther, D., 2006. Laser ablation inductively coupled plasma mass spectrometry for direct analysis of the spatial distribution of trace elements in metallurgical-grade silicon. Analytical and Bioanalytical Chemistry, 386: 12-20. doi: 10.1007/s00216-006-0658-0
      Reynard, B., Lécuyer, C., Grandjean, P., 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155: 233-241. doi: 10.1016/S0009-2541(98)00169-7
      Riquier, L., Tribovillard, N., Averbuch, O., et al., 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms. Chemical Geology, 233: 137-155. doi: 10.1016/j.chemgeo.2006.02.21
      Rollinson, H.R., 1993. Using Geochemical data: evaluation, presentation, interpretation. Longman Group Ltd., London.
      Sarah, G., Gratuze, B., Barrandon, J.N., 2007. Application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient silver coins. Journal of Analytical Atomic Spectrometry, 22: 1163-1167. doi: 10.1039/B704879C
      Sha, L.K., Chappell, B.W., 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. doi: 10.1016/S0016-7037(99)00210-0
      Shields, G., Stille, P., 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175: 29-48. doi: 10.1016/S0009-2541(00)00362-4
      Stefánsson, A., Gíslason, S.R., Arnórsson S., 2001. Dissolution of primary minerals in natural waters Ⅱ. Mineral saturation state. Chemical Geology, 172: 251-276. doi: 10.1016/S0009-2541(00)00262-X
      Sturesson, U., 1995. Llanvirnian (Ord. ) iron ooids in Baltoscandia: element mobility, REE distribution patterns, and origin of the REE. Chemical Geology, 125: 45-60. doi: 10.1016/0009-2541(95)00076-X
      Sturesson, U., 2003. Lower Palaeozoic iron oolites and volcanism from a Baltoscandian perspective. Sedimentary Geology, 159: 241-256. doi: 10.1016/S0037-0738(2)00330-5
      Sturesson, U., Dronov, A., Saadre, T., 1999. Lower Ordovician iron ooids and associated oolitic clays in Russia and Estonia: a clue to the origin of iron oolites? Sedimentary Geology, 123: 63-80. doi: 10.1016/S0037-0738(98)00112-2
      Sturesson, U., Heikoop, J.M., Risk, M.J., 2000. Modern and Palaeozoic iron ooids-a similar volcanic origin. Sedimentary Geology, 136: 137-146. doi: 10.1016/S0037-0738(00)00091-9
      Taylor, K.G., Simo, J.A., Yocum, D., et al., 2002. Stratigraphic significance of ooidal ironstones from the Cretaceous western interior seaway: the peace river formation, Alberta, Canada, and the castlegate sandstone, Utah, U.S.A. . Journal of Sedimentary Research, 72: 316-327. doi: 10.1306/060801720316
      Trythall, R.J.B., 1989. The Mid-Ordovician oolitic ironstones of North Wales: a field guide. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 213-220. doi: 10.1144/GSL.SP.1989.046.01.18
      Tucker, M.E., 1991. Sedimentary Petrology. Blackwell, London.
      Yang, J.Z., Mu, E.Z., 1953. The Devonian strata in western Hubei Province. Acta Palaeontologica, 1(2): 58-66 (in Chinese). http://www.researchgate.net/publication/286016970_The_Devonian_strata_in_western_Hubei_Province
      Ye, L.J., Chen, Q.Y., Zhao, D.X., et al., 1989. Chinese Phosporite. Science Press, Beijing (in Chinese).
      Young, T.P., 1989a. Phanerozoic ironstones: an introduction and review. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: Ⅸ-ⅩⅩⅤ. doi: 10.1144/GSL.SP.1989.046.01.02
      Young, T.P., 1989b. Ecstatically controlled ooidal ironstone deposition: facies relationships of the Ordovician open-shelf ironstones of western Europe. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication: 46: 51-63.
      Zhao, Y.M., Bi, C.S., 2000. Time-space distribution and evolution of the Ningxiang type sedimentary iron deposits. Mineral Deposits, 19(4): 350-362 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200004007.htm
      Zheng, W. Z, Dongye, M.X., Hu, L.L., 1992. REE geochemistry of phosphorites of the sinian doushantou formation in western Hubei. Geological Review, 38(4): 352-359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199204007.htm
      Zhu, X.Q., Wang, Z.G., Huang, Y., et al., 2004. REE content and distribution in apatite and its geological tracing significance. Chinese Rare Earths, 25(5): 41-45 (in Chinese with English abstract). http://www.researchgate.net/publication/309347819_REE_content_and_distribution_in_apatite_and_its_geological_tracing_significance
      候鸿飞, 王士涛, 1985. 中国泥盆纪古地理. 古生物学报, 24(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198502005.htm
      胡宁, 徐安武, 1998. 鄂西宁乡式铁矿分布层位岩相特征与成因探讨. 地质找矿论丛, 13(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK801.004.htm
      廖士范, 1993. 我国显生宙鲕铁石. 岩相古地理, 13(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199303000.htm
      廖士范, 魏梁鸿, 刘成德, 等, 1993. 中国泥盆纪鲕铁石沉积环境、成因. 沉积学报, 11(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199301010.htm
      刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社.
      刘永先, 戈定夷, 曾允孚, 等, 1994. 滇东磷块岩矿床中磷灰石的富集特征. 矿物岩石, 14(4): 17-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS404.002.htm
      杨敬之, 穆思之, 1953. 鄂西泥盆纪地层. 古生物学报, 1(2): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX195302001.htm
      叶连俊, 陈其英, 赵东旭, 等, 1989. 中国磷块岩. 北京: 科学出版社.
      赵一鸣, 毕承思, 2000. 宁乡式沉积铁矿床的时空分布和演化. 矿床地质, 19(4): 350-362. doi: 10.3969/j.issn.0258-7106.2000.04.008
      郑文忠, 东野脉兴, 胡珞兰, 1992. 鄂西震旦纪陡山沱组磷块岩稀土元素地球化学. 地质论评, 38(4): 352-359. doi: 10.3321/j.issn:0371-5736.1992.04.008
      朱笑青, 王中刚, 黄艳, 等, 2004. 磷灰石的稀土组成及其示踪意义. 稀土, 25(5): 41-45. doi: 10.3969/j.issn.1004-0277.2004.05.013
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (3554) PDF downloads(76) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return