• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 4
    Jul.  2011
    Turn off MathJax
    Article Contents
    YANG Xue-ying, GONG Yi-ming, 2011. Pyrite Framboid: Indicator of Environments and Life. Earth Science, 36(4): 643-658. doi: 10.3799/dqkx.2011.066
    Citation: YANG Xue-ying, GONG Yi-ming, 2011. Pyrite Framboid: Indicator of Environments and Life. Earth Science, 36(4): 643-658. doi: 10.3799/dqkx.2011.066

    Pyrite Framboid: Indicator of Environments and Life

    doi: 10.3799/dqkx.2011.066
    • Received Date: 2010-09-11
    • Publish Date: 2011-07-01
    • Pyrite framboid, the wonderful microcrystalline (0.1-1 μm) mineral aggregate (5-50 μm), has been a study focus in different disciplines since scientists first discovered (1923) and named it (1935). This paper reviews the progresses and existing problems of pyrite framboid's studies during different study stages including the biogenesis' theory stage (1923-1969), abiogenesis' theory stage (1969-2000) and multiple genesis's theory stage (2000-present) in terms of formation mechanism and the relationship with the environments. It also explores the prospects of pyrite framboid' study, pointing out that pyrite framboid has a great potential as the indicator of the surface and deep biospheres, the extraterrestrial environments and life; and finally puts forward the proposal that we should further the study of pyrite framboid by integrating its studies in that of earth science, life science, materials science, chemistry, nanotechnology and condensed matter physics.

       

    • loading
    • Allen, K.D., Hahn, G.A., 1994. Geology of the Sunbeam and Grouse Creek gold-silver deposits, Yankee Fork mining district, Eocene Challis volcanic field, Idaho; a volcanic dome- and volcaniclastic-hosted epithermal system. Economic Geology, 89(8): 1964-1982. doi: 10.2113/gsecongeo.89.8.1964
      Bailey, J.V., Raub, T.D., Meckler, A.N., et al., 2009. Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(1-2): 131-142. doi: 10.1016/j.palaeo.2009.11.002
      Bak, F., Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature, 326: 891-892. doi: 10.1038/326891a0
      Baker, B.J., Banfield, J.F., 2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2): 139-152. doi: 10.1016/S0168-6496(03)00028-X
      Bennett, C.E.G., Graham, J., 1980. New observations on natural pyrrhotites, Part Ⅲ. Thermomagnetic experiments. American Mineralogist, 65(7-8): 800-807. doi: 10.2113/gsecongeo.69.5.697
      Berner, R.A., 1969. The synthesis of framboidal pyrite. Economic Geology, 64(4): 383-384. doi: 10.2113/gsecongeo.64.4.383
      Berner, R.A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48(4): 605-615. doi: 10.1016/0016-7037(84)90089-9
      Bianconi, P.A., Lin, J., Strzelecki, A.R., 1991. Crystallization of an inorganic phase controlled by a polymer matrix. Nature, 349(6307): 315-317. doi: 10.1038/349315a0
      Bond, D., Wignall, P.B., Racki, G., 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141(2): 173-193. doi: 10.1017/s0016756804008866
      Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2008. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36(8): 663-666. doi: 10.1130/g24755a.1
      Böttcher, M.E., Lepland, A., 2000. Biogeochemistry of sulfur in a sediment core from the West-Central Baltic Sea: evidence from stable isotopes and pyrite textures. Journal of Marine Systems, 25(3-4): 299-312. doi: 10.1016/S0924-7963(00)00023-3
      Bralia, A., Sabatini, G., Troja, F., 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14(3): 353-374. doi: 10.1007/BF00206365
      Butler, I.B., Rickard, D., 2000. Framboidal pyrite formation via the oxidation of iron (Ⅱ) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. doi: 10.1016/S0016-7037(00)00387-2
      Calvert, S.E., Pederson, T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T
      Canfield, D.E., Olesen, C.A., Cox, R.P., 2006. Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, 70(3): 548-561. doi: 10.1016/j.gca.2005.10.028
      Canfield, D.E., Raiswell, R., 1991. Pyrite formation and fossil preservation, In: Allison, P.A., Briggs, D.E.G., eds., Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York, 337-387.
      Canfield, D.E., Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal of Science, 299(7-9): 697-723. doi: 10.2475/ajs.299.7-9.697
      Canfield, D.E., Thamdrup, B., 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266(5193): 1973-1975. doi: 10.1126/science.11540246
      Canfield, D.E., Thamdrup, B., Fleischer, S., 1998. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol. Oceanogr. , 43(2): 253-264. doi: 10.4319/lo.1998.43.2.0253
      Chang, H.J., Chu, X.L., Feng, L.J., et al., 2009. Framboidal pyrites in cherts of the Laobao Formation, South China: evidence for anoxic deep ocean in the terminal Ediacaran. Acta Petrologica Sinica, 25(4): 1001-1007 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=1000805767
      Chang, H.J., Chu, X.L., Huang, J., et al., 2009. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China). Geochimica et Cosmochimica Acta, 73(13S): A208-A208. http://adsabs.harvard.edu/abs/2009GeCAS..73R.208C
      Cook, T.L., Stakes, D.S., 1995. Biogeological mineralization in deep-sea hydrothermal deposits. Science, 267(5206): 1975-1979. doi: 10.1126/science.267.5206.1975
      Craig, J.R., Vokes, F.M., Solberg, T.N., 1998. Pyrite: physical and chemical textures, Mineral. Deposita, 34(1): 82-101. doi: 10.1007/s001260050187
      Cypionka, H., Smock, A.M., Böttcher, M.E., 1998. A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiology Letters, 166(2): 181-186. doi: 10.1111/j.1574-6968.1998.tb13888.x
      Davison, W., Lishman, J.P., Hilton, J., 1985. Formation of pyrite in freshwater sediments: implications for C/S ratios. Geochimica et Cosmochimica Acta, 49(7): 1615-1620. doi: 10.1016/0016-7037(85)90266-2
      del Giorgio, P.A., Cole, J.J., Cimbleris, A., 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 385(6612): 148-151. doi: 10.1038/385148a0
      Devouard, B., Posfai, M., Hua, X., et al., 1998. Magnetite from magnetotactic bacteria; size distributions and twinning. American Mineralogist, 83(11-12): 1387-1398.
      Farquhar, J., Bao, H., Thiemens, M., 2000a. Atmospheric influence of Earth's earliest sulfur cycle. Science, 289(5480): 756-758. doi: 10.1126/science.289.5480.756
      Farquhar, J., Kim, S.T., Masterson, A., 2007a. Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth and Planetary Science Letters, 264(1-2): 1-8. doi: 10.1016/j.epsl.2007.08.006
      Farquhar, J., Peters, M., Johnston, D.T., et al., 2007b. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449(7163): 706-709. doi: 10.1038/nature06202
      Farquhar, J., Savarino, J., Airieau, S., et al., 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. Journal of Geophysical Research, 106(E12): 32829-32839. doi: 10.1029/2000JE001437
      Farquhar, J., Savarino, J., Jackson, T.L., et al., 2000b. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature, 404(6773): 50-52. doi: 10.1038/35003517
      Farrand, M., 1970. Framboidal sulphides precipitated synthetically. Mineralium Deposita, 5(3): 237-247. doi: 10.1007/BF00201990
      Folk, R.L., 2005. Nannobacteria and the formation of framboidal pyrite: textural evidence. Journal of Earth System Science, 114(3): 369-374. doi: 10.1007/BF02702955
      Fry, B., Cox, J., Gest, H., et al., 1986. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds. Journal of Bacteriology, 165(1): 328-330. doi: 10.1128/jb.165.1.328-330.1986
      Fry, B., Gest, H., Hayes, J.M., 1984. Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum. FEMS Microbiology Letters, 22(3): 283-287. doi: 10.1111/j.1574-6968.1984.tb00742.x
      Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Chemical Geology, 73(3): 205-210. doi: 10.1016/0168-9622(88)90001-2
      Garcia-Guinea, J., Martinez-Frias, J., Gonzalez-Martin, R., et al., 1997. Framboidal pyrites in antique books. Nature, 388(6643): 631-631.
      Goldhaber, M.B., Kaplan, I.R., 1974. The sulfur cycle, In: Goldberg. E.D., ed., The sea, vol. 5. Wiley, New York 569-655.
      Govett, G.J.S., Pantazis, T.M., 1971. Distribution of Cu, Zn, Ni and Co in the Troodos pillow lava series, Cyprus. Institution of Mining and Metallurgy Transactions, Section B: Applied Earth Science, 80: 27-46.
      Graham, U.M., Ohmoto, H., 1994. Experimental study of formation mechanisms of hydrothermal pyrite. Geochimica et Cosmochimica Acta, 58(10): 2187-2202. doi: 10.1016/0016-7037(94)90004-3
      Graham, U.M., Robertson, J.D., 1995. Micro-pixe analysis of framboidal pyrite and associated maceral types in oil shale. Fuel, 74(4): 530-535. doi: 10.1016/0016-2361(95)98355-I
      Grimes, S.T., Brock, F., Rickard, D., et al., 2001. Understanding fossilization: experimental pyritization of plants. Geology, 29(2): 123-126. doi: 10.1130/0091-7613(2001)029<0123:UFEPOP>2.0.CO;2
      Güleç, N., Erler, A., 1983. Masif sülfid yataklarlndaki piritlerin karakteristik iz element içerikleri. Bulletin of the Geological Societv of Turkev, 26: 145-152.
      Guo, Q., Shields, G.A., Liu, C.Q., et al., 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216. doi: 10.1016/j.palaeo.2007.03.016
      Gusev, M.V., Mineeva, L.A., 1992. Microbiology. Moscow State University Pubic House, 448: 37.
      Habicht, K.S., Canfield, D.E., 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61(24): 5351-5361. doi: 10.1016/S0016-7037(97)00311-6
      Habicht, K.S., Canfield, D.E., Rethmeier, J., 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta, 62(15): 2585-2595. doi: 10.1016/S0016-7037(98)00167-7
      Habicht, K.S., Gade, M., Thamdrup, B., et al., 2002. Calibration of sulfate levels in the Archean Ocean. Science, 298 (5602): 2372-2374. doi: 10.1126/science.1078265
      Hallam, A., 1980. Black shales. J. Geol. Soc. London, 137: 123-124. doi: 10.1144/gsjgs.137.2.0123
      Hallbauer, D.K., 1986. The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium and carbonaceous matter. In: Anhaeusser. C.R., Maske, S., eds., Mineral deposits of southern Africa. Geological Society of South Africa, Johannesburg, 731-752.
      Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y
      Haynes, D.W., 1986. Stratiform copper deposits hosted by low-energy sediments; I, timing of sulfide precipitation, an hypothesis. Economic Geology, 81(2): 250-265. doi: 10.2113/gsecongeo.81.2.250
      Heywood, B.R., Bazylinski, D.A., Garratt-Reed, A., et al., 1990. Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften, 77(11): 536-538. doi: 10.1007/BF01139266
      Johnston, D.T., Farquhar, J., Habicht, K.S., et al., 2008. Sulphur isotopes and the search for life: strategies for identifying sulphur metabolisms in the rock record and beyond. Geobiology, 6(5): 425-435. doi: 10.1111/j.1472-4669.2008.00171.x
      Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(4-5): 111-129. doi: 10.1016/0009-2541(94)90085-X
      Jorgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249(4965): 152-154. doi: 10.1126/science.249.4965.152
      Kalliokoski, J., 1966. Diagenetic pyritization in three sedimentary rocks. Economic Geology, 61(5): 872-885. doi: 10.2113/gsecongeo.61.5.872
      Kalliokoski, J., Cathles, L., 1969. Morphology, mode of formation and diagenetic changes in framboids. Bull. Geol. Soc. Finland, 41: 125-133. doi: 10.17741/bgsf/41.014
      Kalogeropoulos, S.I., 1983. A discussion of the paper by G.R. Taylor "a mechanism for framboid formation as illustrated by a volcanic exhalative sediment". Mineral. Deposita, 17: 23-36 (1982), 18(1): 127-128. doi: 10.1007/BF00206700
      Kaplan, I.R., Emery, K.O., Rittenberg, S.C., 1963. The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta, 27(4): 297-312. doi: 10.1016/0016-7037(63)90074-7
      Kaplan, I.R., Rittenberg, S.C., 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. , 34(2): 195-212. doi: 10.1099/00221287-34-2-195
      Keller, R.N., 1964. Geochemistry of Solids: an introduction. Inorganic Chemistry, 3(10): 1473-1473. doi: 10.1021/ic50020a034
      Kimura, H., Watanabe, Y., 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29(11): 995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2
      Kleikemper, J., Schroth, M.H., Bernasconi, S.M., et al., 2004. Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources. Geochimica et Cosmochimica Acta, 68(23): 4891-4904. doi: 10.1016/j.gca.2004.05.034
      Konhauser, K.O., 1997. Bacterial iron biomineralisation in nature. FEMS Microbiol. Rev. , 20(3-4): 315-326. doi: 10.1111/j.1574-6976.1997.tb00317x
      Kríbek, B., 1975. The origin of framboidal pyrite as a surface effect of sulphur grains. Mineralium Deposita, 10(4): 389-396. doi: 10.1007/BF00207896
      Krouse, H.R., Grineneko, V.A., 1991. Stable isotopes in the assessment of natural and anthropogenic sulphur in the evironment. John Wiley and Sons Ltd, New York, 5-10.
      Large, D.J., Fortey, N.J., Milodowski, A.E., et al., 2001. Petrographic observations of iron, copper, and zinc sulfides in freshwater canal sediment. Journal of Sedimentary Research, 71(1): 61-69. doi: 10.1306/052600710061
      Lewan, M.D., 1984. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta, 48(11): 2231-2238. doi: 10.1016/0016-7037(84)90219-9
      Lewicka-Szczebak, D., Trojanowska, A., Górka, M., et al., 2008. Sulphur isotope mass balance of dissolved sulphate ion in a freshwater dam reservoir. Environmental Chemistry Letters, 6(3): 169-173. doi: 10.1007/s10311-007-0120-3
      Loftus-Hills, G., Solomon, M., 1967. Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Mineralium Deposita, 2(3): 228-242. doi: 10.1007/BF00201918
      Lonsdale, P., 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Research, 24(9): 857-858. doi: 10.1016/0146-6291(77)90478-7
      Love, L.G., 1957. Micro-organisms and the presence of syngenetic pyrite. Geol. Soc. Lond. Q.J. , 113: 429-440. doi: 10.1144/GSL.JGS.1957.113.01-04.18
      Love, L.G., 1962. Biogenic primary sulfide of the Permian Kupferschiefer and Marl Slate. Economic Geology, 57(3): 350-366. doi: 10.2113/gsecongeo.57.3.350
      Love, L.G., Amstutz, G.C., 1966. Review of microscopic pyrite from the Devonian Chattanooga shale and Rammelsberg Banderz. Fortschritte der Mineralogie, 43: 273-309.
      Love, L.G., Amstutz, G.C., 1969. Framboidal pyrite in two andesites. Neues Jahrbuch für Mineralogie-Abhandlungen, 3: 97-108.
      Love, L.G., Murray, J.W., 1963. Biogenic pyrite in recent sediments of Christchurch harbour, England. Am. J. Sci. , 261(5): 433-448. doi: 10.2475/ajs.261.5.433
      Lowenstam, H., 1981. Minerals formed by organisms. Science, 211(4487): 1126-1131. doi: 10.1126/science.7008198
      Luther Ⅲ, G.W., 1991. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 55(10): 2839-2849. doi: 10.1016/0016-7037(91)90449-F
      Lyons, T.W., Gill, B.C., 2010. Ancient sulfur cycling and oxygenation of the early biosphere. Elements, 6(2): 93-99. doi: 10.2113/gselements.6.2.93
      MacLean, L.C., Tyliszczak, T., Gilbert, P.U., et al., 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6(5): 471-480. doi: 10.1111/j.1472-4669.2008.00174.x
      Marynowski, L., Zaton, M., Karwowski, L., 2008. Early diagenetic conditions during formation of the Callovian (Middle Jurassic) carbonate concretions from Lukow (eastern Poland): evidence from organic geochemistry, pyrite framboid diameters and petrographic study. Neues Jahrbuch Für Geologie Und Palaontologie-Abhandlungen, 247(2): 191-208. doi: 10.1127/0077-7749/2008/0247-0191
      Mayer, B., Prietzel, J., Krouse, H.R., 2001. The influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soils. Applied Geochemistry, 16(9-10): 1003-1019. doi: 10.1016/S0883-2927(01)00010-5
      Merinero, R., Lunar, R., Martinez-Fiias, J., et al., 2008. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Marine and Petroleum Geology, 25(8): 706-713. doi: 10.1016/j.marpetgeo.2008.03.005
      Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750. doi: 10.1016/S0016-7037(99)00126-X
      Morse, J.W., Wang, Q., 1997. Pyrite formation under conditions approximating those in anoxic sediments. Ⅱ. Influence of precursor iron minerals and organic matter. Marine Chemistry, 57(3-4): 187-193. doi: 10.1016/S0304-4203(97)00050-9
      Mukhopadhyay, P.K., Goodarzi, F., Crandlemire, A.L., et al., 1998. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton basins, Nova Scotia, eastern Canada. International Journal of Coal Geology, 37(1-2): 113-141. doi: 10.1016/S0166-5162(98)00020-2
      Norman, A.L., Giesemann, A., Krouse, H.R., et al., 2002. Sulphur isotope fractionation during sulphur mineralization: results of an incubation-extraction experiment with a Black Forest soil. Soil Biology & Biochemistry, 34(10): 1425-1438. http://www.sciencedirect.com/science/article/pii/S003807170200086X
      Novák, M., Adamová, M., Miličić, J., 2003. Sulfur metabolism in polluted sphagnum peat Bogs: a combined 34S-35S-210Pb study. Water, Air, and Soil Pollution, 3(1): 181-200. doi: 10.1023/A:1022132226288
      Novák, M., Bottrell, S.H., Prechova, E., 2001. Sulfur isotope inventories of atmospheric deposition, spruce forest floor and living Sphagnum along a NW-SE transect across Europe. Biogeochemistry, 53(1): 23-50. doi: 10.1023/A:1010772205756
      Novák., M., Wieder, R.K., Schell, W.R., 1994. Sulfur during early diagenesis in Sphagnum peat: insights from δ34S ratio profiles in 210Pb-dated peat cores. Limnology and Oceanography, 39(5): 1172-1185. doi: 10.2307/2838480
      Ohfuji, H., Boyle, A.P., Prior, D.J., et al., 2005. Structure of framboidal pyrite: an electron backscatter diffraction study. American Mineralogist, 90(11-12): 1693-1704. doi: 10.2138/Am.2005.1829
      Ohfuji, H., Rickard, D., 2005. Experimental syntheses of framboids-a review. Earth Science Reviews, 71(3-4): 147-170. doi: 10.1016/j.earscirev.2005.02.001
      Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Reviews in Minerology and Geochemistry, 16. Mineralogical Society of America, Washington D.C., 491-559.
      Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits. 2nd ed. . Wiley, New York, 509-567.
      Ostwald, J., England, B.M., 1979. The relationship between euhedral and framboidal pyrite in base-metal sulfide ores. Mineralogical Magazine, 43: 297-300. doi: 10.1180/minmag.1979.043.326.13
      Papunen, H., 1966. Framboidal texture of the pyritic layer found in a peat bog in SE Finland. Bull. Comm. Geol. Finlande, 222: 117-125.
      Passier, H.F., Middelburg, J.J., Lange, G.J. d., et al., 1997. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology, 25(6): 519-522. doi: 10.1130/0091-7613(1997)025<0519:PCMASI>2.3.CO;2
      Pavlov, A.A., Kasting, J.F., 2002. Mass-independent fractionation of sulfur isotopes in archean sediments: strong evidence for an anoxic archean atmosphere. Astrobiology, 2(1): 27-41. doi: 10.1089/153110702753621321
      Perry, K.A., Pedersen, T.F., 1993. Sulphur speciation and pyrite formation in meromictic ex-fjords. Geochimica et Cosmochimica Acta, 57(18): 4405-4418. doi: 10.1016/0016-7037(93)90491-E
      Popa, R., Kinkle, B.K., Badescu, A., 2004. Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiology Journal, 21(3): 193-206. doi: 10.1080/01490450490275497
      Prieur, D., Erauso, G., Jeanthon, C., 1995. Hyperthermophilic life at deep-sea hydrothermal vents. Planet. Space. Sci. , 43(1-2): 115-122. doi: 10.1016/0032-0633(94)00143-F
      Qian, G., Brugger, J., Skinner, W.M., et al., 2011. An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300 ℃. Geochimica et Cosmochimica Acta, 74(19): 5610-5630. doi: 10.1016/j.gca.2010.06.035
      Rachel, A.M., Bruce, S.L., 2009. Preservation of early and Middle Cambrian soft-bodied arthropods from the Pioche shale, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(1-2): 57-62. doi: 10.1016/j.palaeo.2009.02.014
      Raiswell, R., 1982. Pyrite texture, isotopic composition and the availability of iron. American Journal of Science, 282: 1244-1263. doi: 10.2475/ajs.282.8.1244
      Raiswell, R., Whaler, K., Dean, S., et al., 1993. A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Marine Geology, 113(1-2): 89-100. doi: 10.1016/0025-3227(93)90151-K
      Rees, C.E., 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta, 37(5): 1141-1162. doi: 10.1016/0016-7037(73)90052-5
      Rickard, D., 1989. Experimental concentration-time curves for the iron (Ⅱ) sulphide precipitation process in aqueous solutions and their interpretation. Chemical Geology, 78(3-4): 315-324. doi: 10.1016/0009-2541(89)90066-1
      Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian basin (USA). Chemical Geology, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029
      Russell, M.J., Hall, A.J., Gize, A.P., 1990. Pyrite and the origin of life. Nature, 344(6265): 387. doi: 10.1038/344387b0
      Russell, M.J., Hall, A.J., Turner, D., 1989. In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova, 1(3): 238-241. doi: 10.1111/j.1365-3121.1989.tb00364.x
      Rust, G.W., 1935. Colloidal primary copper ores at Cornwall mines, southeastern Missouri. The Journal of Geology, 43(4): 398-426. doi: 1 10.1086/624318
      Ryall, W.R., 1977. Anomalous trace elements in pyrite in the vicinity of mineralized zones of Woodlawn, N.S.W., Australia. J. Geochem. Explor. , 8(1-2): 73-83. doi: 10.1016/0375-6742(77)90044-9
      Sapota, T., 2005. Morphology, internal structure and chemical composition of oxidized pyrite framboids from sediments of Lake Baikal, Siberia. Neues Jahrbuch Für Mineralogie-Abhandlungen, 181(2): 111-123. doi: 10.1127/0077-7757/2005/0010
      Schneiderhöhn, H., 1923. Chalkographische Untersuchung des Mansfelder Kupferschiefers. Neues Jahrb. Mineral. Geol. Paläontol. , 47: 1-38. http://www.researchgate.net/publication/284027149_Chalkographische_Untersuchung_des_Mansfelder_Kupferschiefers
      Schoonen, M.A.A., Barnes, H.L., 1991. Reactions forming pyrite and marcasite from solution: Ⅱ. Via FeS precursors below 100 ℃. Geochimica et Cosmochimica Acta, 55(6): 1505-1514. doi: 10.1016/0016-7037(91)90123-M
      Schroth, M.H., Kleikemper, J., Bolliger, C., et al., 2001. In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses. Journal of Contaminant Hydrology, 51(3-4): 179-195. doi: 10.1016/S0169-7722(01)00128-0
      Scott, R.J., Meffre, S., Woodhead, J., et al., 2009. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104(8): 1143-1168. doi: 10.2113/gsecongeo.104.8.1143
      Skyring, G.W., Donnelly, T.H., 1982. Precambrian sulfur isotopes and a possible role for sulfite in the evolution of biological sulfate reduction. Precambrian Research, 17(1): 41-61. doi: 10.1016/0301-9268(82)90153-X
      Steinike, K., 1963. A further remark on biogenic sulfides; inorganic pyrite spheres. Economic Geology, 58(6): 998-1000. doi: 10.2113/gsecongeo.58.6.998
      Sugawara, H., Sakakibara, M., Belton, D., et al., 2008. Quantitative micro-PIXE analysis of heavy-metal-rich framboidal pyrite. Journal of Mineralogical and Petrological Sciences, 103(2): 131-134. doi: 10.2465/jmps.071019
      Suits, N.S., Wilkin, R.T., 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26(12): 1099-1102. doi: 10.1130/0091-7613(1998)026<1099:PFITWC>2.3.CO;2
      Sweeney, R.E., Kaplan, I.R., 1973. Pyrite framboid formation; faboratory fynthesis and farine sediments. Economic Geology, 68(5): 618-634. doi: 10.2113/gsecongeo.68.5.618
      Taylor, G.R., 1982. A mechanism for framboid formation as illustrated by a volcanic exhalative sediment. Mineralium Deposita, 17(1): 23-36. doi: 10.1007/BF00206374
      Thamdrup, B., Finster, K., Hansen, J.W., et al., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59(1): 101-108. doi: 10.1128/aem.59.1.101-108.1993
      Tyson, R.V., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society, London Special Publication, 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01
      Vallentyne, J.R., 1963. Isolation of pyrite spherules from recent sediments. Limnol. and Oceanogr. , 8(1): 16-30. doi: 10.4319/lo.1963.8.1.0016
      Vine, J.D., Tourtelot, E.B., 1970. Geochemistry of black shale deposits; a summary report. Economic Geology, 65(3): 253-272. doi: 10.2113/gsecongeo.65.3.253
      Wacey, D., Mcloughlin, N., Whitehouse, M.J., et al., 2010. Two coexisting sulfur metabolism in a ca. 3 400 Ma sandstone. Geology, 38(12): 1115-1118. doi: 10.1130/G31329.1
      Wang, Q.W., Morse, J.W., 1996. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology. Marine Chemistry, 52(2): 99-121. doi: 10.1016/0304-4203(95)00082-8
      Wenk, H.R., Bulakh, A., 2004. Minerals: their constitution and origin. Cambridge University Press, Cambridge, UK.
      Wignall, P.B., 1994. Black shales. Clarendon Press, Oxford; Oxford University Press, New York.
      Wignall, P.B., Newton, R., Brookfield, M.E., 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography Palaeoclimatology Palaeoecology, 216(3-4): 183-188. doi: 10.1016/j.palaeo.2004.10.009
      Wignall, P.B., Myers, K.J., 1988. Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 16(5): 452-455. doi: 10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2
      Wignall, P.B., Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298(7): 537-552. doi: 10.2475/ajs.298.7.537
      Wignall, P.B., Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155
      Wilkin, R.T., Arthur, M.A., 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochimica et Cosmochimica Acta, 65(9): 1399-1416. doi: 10.1016/S0016-7037(01)00552-X
      Wilkin, R.T., Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60(21): 4167-4179. doi: 10.1016/S0016-7037(97)81466-4
      Wilkin, R.T., Barnes, H.L., 1997a. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2): 323-339. doi: 10.1016/S0016-7037(96)00320-1
      Wilkin, R.T., Barnes, H.L., 1997b. Pyrite formation in an anoxic estuarine basin. American Journal Science, 297(6): 620-650. doi: 10.2475/ajs.297.6.620
      Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8
      Williford, K.H., Foriel, J., Ward, P.D., et al., 2009. Major perturbation in sulfur cycling at the Triassic-Jurassic boundary. Geology, 37(9): 835-838. doi: 10.1130/g30054A.1
      Yang, J.H., Jiang, S.Y., Ling, H.F., et al., 2004. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14(2): 152-157. doi: 10.1080/10020070412331343291
      Yarincik, K.M., Murray, R.W., Lyons, T.W., et al., 2000. Oxygenation history of bottomwaters in the Cariaco basin, Venezuela, over the past 578, 000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15 (6): 593-604. doi: 10.1029/1999PA000401
      Yushkin, N.P., 2000. Biomineral homologies and organismobiosis. In: Mineralogy and life: biomineral homologies. Geoprint, Syktyvkar, 9-12.
      Zhang, C.L., Vali, H., Romanek, C.S., et al., 1998. Formation of single-domain magnetite by a thermophilic bacterium. American Mineralogist, 83(11-12_Part_2): 1409-1418.
      Zhang, W., Liu, C.Q., Liang, X.B., 2007. Biological function in sulfur isotope fractionation and environmental effect. Earth And Environment, 35(3): 223-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200703004.htm
      常华进, 储雪蕾, 冯连君, 等, 2009. 华南老堡组硅质岩中草莓状黄铁矿——埃迪卡拉纪末期深海缺氧的证据. 岩石学报, 25(4): 1001-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904024.htm
      张伟, 刘丛强, 梁小兵, 2007. 硫同位素分馏中的生物作用及其环境效应. 地球与环境, 35(3): 223-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200703004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (4069) PDF downloads(91) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return