• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 5
    Sep.  2011
    Turn off MathJax
    Article Contents
    XU Zi-ying, SUN Zhen, ZHOU Di, ZHANG Yun-fan, SUN Long-tao, ZHAO Zhong-xian, LI Fu-cheng, 2011. Discussion on the Influence of Weakness Body on Compression Structure Deformation Through Analogue Modeling and Its Application. Earth Science, 36(5): 921-930. doi: 10.3799/dqkx.2011.097
    Citation: XU Zi-ying, SUN Zhen, ZHOU Di, ZHANG Yun-fan, SUN Long-tao, ZHAO Zhong-xian, LI Fu-cheng, 2011. Discussion on the Influence of Weakness Body on Compression Structure Deformation Through Analogue Modeling and Its Application. Earth Science, 36(5): 921-930. doi: 10.3799/dqkx.2011.097

    Discussion on the Influence of Weakness Body on Compression Structure Deformation Through Analogue Modeling and Its Application

    doi: 10.3799/dqkx.2011.097
    • Received Date: 2011-05-28
    • Publish Date: 2011-09-15
    • To investigate the influence of weakness body on compression, we carry out six sets of analogue modeling experiments to study the impact of size, location as well as the force direction of weakness body on structural deformation.Based on the modeling results, effects of weakness body on compression structure deformation in the Yinggehai and Qiongdongnan basin are discussed.Experiments show that during compression, uplift first appears and propagates rapidly in area with weakness body, then the uplift appears in non-weakness body, the uplift area in weakness body is bigger than that in area without weakness body, and its fold deformation is stronger than that of non-weakness body.With larger weakness body, the deformation region of weakness body becomes bigger, and the deformation gets stronger.However, the deformation region of non-weakness body stays stable.When the weakness body is located closer to compressive boundary, the deformation of compressive structures appears earlier and stronger; otherwise the deformation is later and weaker.The compressive deformation is stronger under normal compression than that under oblique compression.By experimental modeling, we conclude that the features of compression fold in middle sag of Yinggehai basin and Qiongdongnan basin may be related with distance of oblique compress boundary and the existence of weakness body, and the oblique compress stress comes from sinistral slip of Indochina block.Some fold size is connected with initial size of weakness body.

       

    • loading
    • [1]
      Bigi, S., Paolo, L. D., Vadacca, L., et al., 2010. Load and unload as interference factors on cyclical behavior and kinematics of Coulomb wedges: insights from sandbox experiments. Journal of Structural Geology, 32(1): 28-44. doi: 10.1016/j.jsg.2009.06.018.
      [2]
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. , 98(B4): 6299-6328. doi: 10.1029/92JB02280.
      [3]
      Brun, J. P., 1999. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Phil. Trans. R. Soc. Lond. A (Philosophical Transactions of the Royal Society A), 357(1753): 695-712. doi: 10.1098/rsta.1999.0349.
      [4]
      Callot, J. P., Grigne, C., Geoffroy, L., et al., 2001. Development of volcanic passive margins: two-dimensional laboratory models. Tectonics, 20(1): 148-149. doi: 10.1029/2000TC900030
      [5]
      Corti, G., Bonini, M., Innocenti, F., et al, 2001. Centrifuge models simulating magma emplacement during oblique rifting. Journal of Geodynamics, 31(5): 557-576. doi: 10.1016/S0264-3707(01)00032-1.
      [6]
      Corti, G., Bonini, M., Conticelli S., et al., 2003. Analogue modeling of continental extension: a review focused on the relations between the patterns of deformation and the presenceof magma. Earth-Science Reviews, 63(3-4): 169-247. doi: 10.1016/S0012-8252(03)00035-7.
      [7]
      Corti, G., Manetti, P., 2006. Asymmetric rifts due to asymmetric Mohos: an experimental approach. Earth and Planetary Science Letters, 245(1-2): 315-329. doi: 10.1016/j.epsl.2006.02.004.
      [8]
      Cruden, A. R., Koyi, H., Schmeling, H., 1995. Diapiric basal entrainment of mafic into felsic magma. Earth and Planetary Science Letters, 131(3-4): 321-340. doi: 10.1016/0012-821X(95)00033-9.
      [9]
      Davy, P., 1991. Experiment on shortening of a 4-layer model of the continental lithosphere. Tectonophysics, 188(12): 1-25. doi: 10.1016/0040-1951(91)90311-F.
      [10]
      Duerto, L., McClay, K., 2009. The role of syntectonic sedimentation in the evolution of doubly vergent thrust wedges and foreland folds. Marine and Petroleum Geology, 26(7): 1051-1069. doi: 10.1016/j.marpetgeo.2008.07.004.
      [11]
      Galland, O., Cobbold, P. R., Hallot, E., et al., 2006. Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth and Planetary Science Letters, 243(3-4): 786-804. doi: 10.1016/j.epsl.2006.01.014.
      [12]
      Graveleau, F., Dominguez, S., 2008. Analogue modelling of the interaction between tectonics, erosion and sedimentation in foreland thrust belts. Tectonics, 340(5): 324-333. doi: 10.1016/j.crte.2008.01.005.
      [13]
      Keep, M., 2003. Physical modelling of deformation in the Tasman orogenic zone. Tectonophysics, 375(1-4): 37-47. doi: 10.1016/j.tecto.2003.06.002.
      [14]
      Marques, F. O., 2008. Thrust initiation and propagation during shortening of a 2-layer model lithosphere. Journal of Structural Geology, 30(1): 29-38. doi: 10.1016/j.jsg.2007.09.005
      [15]
      McClay, K. R., Whitehouse, P. S., Dooley, T., et al., 2004.3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology, 21(7): 857-877. doi: 10.1016/j.marpetgeo.2004.03.009.
      [16]
      Montanari, D., Corti, G., Sani, F., et al., 2010. Experiment investigation on granite emplacement during shortening. Tectonophysics, 484(1-4): 147-155. doi: 10.1016/j.tecto.2009.09.010.
      [17]
      Pichot, T., Nalpas, T., 2009. Influence of synkinematic sedimentation in a thrust system with two decollement levels; analogue modeling. Tectonophysics, 473(3-4): 466-475. doi: 10.1016/j.tecto.2009.04.003.
      [18]
      Shan, J. Z., 2004. Three-dimensional physical experiments of symmetrical fold. Petroleum Exprolation and Development, 31(5): 8-10 (in Chinese with English abstract).
      [19]
      Sun, Z., Sun, L. T., Zhou, D., et al., 2009. Discussion on the South China Sea evolution and lithospheric breakup through 3D anologue modeling. Earth Science—Journal of China University of Geosciences, 34(3): 435-447 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.049
      [20]
      Sun, Z., Zhong, Z. H., Zhou, D., 2007. The analysis and analogue modeling of the tectonic evolution and strong subsidence in the Yinggehai basin. Earth Science—Journal of China University of Geosciences, 32(3): 347-356.
      [21]
      Sun, Z., Zhou, D., Zhong, Z. H., et al., 2003. Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics, 372: 41-58. doi: 10.1016/S0040-1951(03)00230-0
      [22]
      Sun, Z., Zhou, D., Zhong, Z. H., et al., 2006. Research on the dynamics of the South China Sea opening; evidence from analogue modeling. Science in China (Ser. D), 49(3): 258-271. doi: 10.1007/s11430-006-0258-z
      [23]
      Tibaldi, A., 2008. Contractional tectonics and magma paths in volcanoes. Journal of Volcanology and Geothermal Research, 176(2): 291-301. doi: 10.1016/j.jvolgeores.2008.04.008.
      [24]
      Tron, V., Brun, J. P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics, 188(1-2): 71-84. doi: 10.1016/0040-1951(91)90315-J.
      [25]
      Wang, Y., Wang, Y. M., Zhao, X. K., 2004. Application of simulation experiment to the study of structural evolution: an example of the Zhuang Xi buried hill. Petroleum Geology and Experiment, 26(3): 308-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200403017.htm
      [26]
      Wei, C. G., Zhou, J. X., He, Y. D., 2004. Experimental study with sandbox of the influence of rock's intensity on formation of thrusts. Earth Science Frontiers, 11(4): 559-565 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404032.htm
      [27]
      Xie, Y. H., Zhao, K., Zhou, J. X., et al, 2010. Physical modeling of the effects of surface configurations on structural features of thrust zones. Sedimentary Geology and Tethyan Geology, 30(1): 89-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201001016.htm
      [28]
      Zhang, Y. F., Sun, Z., Zhou, D., et al., 2008. Stretching characteristics and its dynamic significance of the northern continental margin of South China Sea. Science in China (Ser. D), 51(3): 422-430. doi: 10.1007/s11430-008-0019-2.
      [29]
      Zhou, J. X., Wei, C. G., Zhu, Z. J., 2002. Influence of substrate contraction on the deformational characteristics of compressional structures: insights from sandbox experiments. Earth Science Frontiers, 9(4): 377-382 (in Chinese with English abstract).
      [30]
      Zhou, J. X., Xu, F. Y., Zhu, Z. J, 2003. Physical modeling of the Cenozoic deformation in northern Qaidam basin. Acta Geoscientia Sinica, 24(4): 299-304 (in Chinese with English abstract).
      [31]
      Zhou, J. X., Zhou, J. S., 2006. Mechanisms of Cenozoic deformation in the Bohai basin, Northeast China: physical modeling and discussions. Science in China (Ser. D), 49(10): 1053-1069. doi: 10.1007/s11430-006-1053-6
      [32]
      Zhu, Z. J., Zhou, J. X., 2003. Experimental study on influence of substrate contraction on structural patterns of oblique compressional basin. Geotectonica et Metallogenia, 27(4): 390-394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200304010&dbcode=CJFD&year=2003&dflag=pdfdown
      [33]
      单家增, 2004. 对称褶皱形成的三维构造物理模拟实验. 石油勘探与开发, 31(5): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405002.htm
      [34]
      孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学——中国地质大学学报, 34(3): 435-447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903008.htm
      [35]
      孙珍, 钟志洪, 周蒂, 2007. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟. 地球科学——中国地质大学学报, 32(3): 347-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703006.htm
      [36]
      王颖, 王英民, 赵锡奎, 2004. 构造模拟实验在构造研究中的应用——以桩西潜山为例. 石油实验地质, 26(3): 308-312. doi: 10.3969/j.issn.1001-6112.2004.03.017
      [37]
      魏春光, 周建勋, 何雨丹, 2004. 岩石强度对冲断层形成特征影响的砂箱实验研究. 地学前缘, 11(4): 559-565. doi: 10.3321/j.issn:1005-2321.2004.04.022
      [38]
      谢玉华, 赵坤, 周建勋, 等, 2010. 地表几何形态对冲断带构造特征影响的物理模拟实验研究. 沉积与特提斯地质, 30(1): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201001016.htm
      [39]
      周建勋, 魏春光, 朱战军, 2002. 基底收缩对挤压构造变形特征影响——来自砂箱实验的启示. 地学前缘, 9(4): 377-382. doi: 10.3321/j.issn:1005-2321.2002.04.017
      [40]
      周建勋, 徐凤银, 朱战军, 2003. 柴达木盆地北缘新生代构造变形的物理模拟. 地球学报, 24(4): 299-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200304001.htm
      [41]
      朱战军, 周建勋, 2003. 基底收缩对斜向挤压盆地构造格局影响的实验研究. 大地构造与成矿学, 27(4): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200304010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (3652) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return