• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 6
    Jun.  2011
    Turn off MathJax
    Article Contents
    JIANG Jun-hua, WANG Rui-jiang, QU Xiao-ming, XIN Hong-bo, WANG Zhen-zhong, 2011. Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, After the Closure of the Tethys Oceanic Basin. Earth Science, 36(6): 1021-1032. doi: 10.3799/dqkx.2011.108
    Citation: JIANG Jun-hua, WANG Rui-jiang, QU Xiao-ming, XIN Hong-bo, WANG Zhen-zhong, 2011. Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, After the Closure of the Tethys Oceanic Basin. Earth Science, 36(6): 1021-1032. doi: 10.3799/dqkx.2011.108

    Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, After the Closure of the Tethys Oceanic Basin

    doi: 10.3799/dqkx.2011.108
    • Received Date: 2011-02-11
      Available Online: 2021-11-10
    • Publish Date: 2011-06-15
    • A series of NS-and EW-striking dykes occur in Bangong lake region, western segment of the Bangong lake-Nujiang suture in Tibetan plateau, including both granite porphyry and diorite porphyrite. Based on petrochemical analyses and zircon U-Pb LA-ICP-MS dating combined with field investigation, the present authors propose that these dykes represent a crustal extension event of the Bangong lake arc zone after the closure of Bangeng lake middle-Tethys oceanic basin. The granite porphyries occuring only in NS-strike and the diorite porphyrites occuring both in NS- and EW-strike respectively yield a weighted mean age of 79.59±0.32Ma (MSWD=1.08) with 13 zircons and (76.9±1.2)Ma (MSWD=2.8) with 6. These results indicate that the crustal extensional process of the Bangong lake arc zone occurring in Late Cretaceous epoch was initialed only in EW-trending and slightly later also in NS-trending. Petrochemically, the two types of the dykes appear arc magmatic features characterized by enrichment of large iron incompatible elements (Rb, U, Th, K, Pb) and depletion of high field strength elements (Nb and Ti) which were attributed to metasomatism of Indian-MORB mantle by subducted sediment melt. Furthermore, by analyzing geochemical characteristics of the dyke, we come to the conclusion that the granite porphyries were generated at a shallower depth under amphibolite facies conditions, and the diorite porphyrites were probably under eclogite facies or garnet amphibolite conditions. And the amount of sediment melt involved in the mantle metasomatism related to diorite porphyrites varies largely from 1% to 10% with a source partial melting degree ranging from 8% to 15%. Whereas in the granite porphyries, the amount varies from 10% to 15% and their source partial melting degree is up to 15%.

       

    • loading
    • Cao, S.H., Li, D.W., Yu, Z.Z., et al., 2009. Characteristics and mechanism of the Dangra Yun Co and Xuru Co NS-trending graben in the Gangdese, Tibet. Earth Science—Journal of China University of Geosciences, 34(6): 914-920 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.104
      Chang, C.F., Zheng, X.L., Pan, Y.S., 1978. The geology history of Himalaya and tectonic belt division and causes for uplift. International Geological Collection of Academic Paper Ⅰ—Regional Tectonic and Geomechanics. Geological Publishing House, Beijing, 198-211 (in Chinese).
      Class, C., Miller, D.M., Goldstein, S.L., et al., 2000. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian arc. Geochemistry, Geophysics, Geosystems, 1: 1-34. doi: 10.1029/1999GC000010
      Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52. doi: 10.1038/374049a0
      Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302. doi: 10.1016/0012-821X(86)90186-X
      Coward, M.P., Kidd, W.S.F., Pan, Y., et al., 1988. The structure of the 1985 Tibet geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society, 327(1594): 307-333. doi: 10.1098/rsta.1988.0131
      Dunlap, W.J., Wysoczanski, R., 2002. Thermal evidence for Early Cretaceous metamorphism in the Shyok suture zone and age of the Khardung volcanic rocks, Ladakh, India. Journal of Asian Earth Sciences, 20(5): 481-490. doi: 10.1016/S1367-9120(01)00042-6
      Elliott, T., Plank, T., Zindler, A., et al., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7): 14991-15019. doi: 10.1029/97JB00788
      Girardeau, J., Marcoux, J., Fourcade, E., et al., 1985. Xainxa ultramafic rocks, Central Tibet, China: tectonic environment and geodynamic significance. Geology, 13(5): 330-333. doi:10.1130/0091-7613(1985)13<330:XURCTC>2.0.CO;2
      Gómez-Tuenal, A., Langmuir, C.H., Goldstein, S.L., et al., 2007. Geochemical evidence for slab melting in the Trams-Mexican volcanic belt. Petrology, 48(3): 537-562. doi: 10.1093/petrology/egl071
      Kapp, P., Murphy, M.A., Yin, A., et al., 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029-1053. doi: 10.1029/2001TC001332.
      Mei, H.J., Lin, X.N., Chi, J.X., et al., 1981. On ophiolite system on Qinghai-Xizang plateau with particular reference to its genesis in West Xizang. Geol. Ecol Study of Qinghai-Xizang Plateau Proc. Symp. Qinghai-Xizang Plateau, 1: 545-556. http://www.researchgate.net/publication/313511669_On_ophiolite_system_on_Qinghai-Xizang_plateau_with_particular_reference_to_its_genesis_in_West_Xizang
      Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424. doi: 10.1093/petroj/40.9.1399
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080
      Pan, G.T., Zhu, D.C., Wang, L.Q., et al., 2004. Bangong Lake-Nu river suture zone-the northern boundary of Gondwana land: evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404005.htm
      Pearce, J.A., Deng, W.M., 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosoplical Transactions of the Royal Society, 327(1594): 215-238. doi: 10.1098/rsta.1988.0127
      Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2
      Qu, X.M., Hou, Z.Q., Li, Y.G., 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74(3-4): 131-148. doi: 10.1016/j.lithos.2004.01.003
      Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan plateau. Geochimica, 38(6): 523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200906005.htm
      Rehkämpe, M., Hofmann, A.W., 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Sciences Letters, 147(1-4): 93-106. doi: 10.1016/S0012-821X(97)00009-5
      Srimal, N., 1986. India-Asia collision: implications from the geology of the eastern Karakoram. Geology, 14(6): 523-527. doi:10.1130/0091-7613(1986)14<523:ICIFTG>2.0.CO;2
      Tiepolo, M., Vannucci, R., Oberti, R., et al., 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite, crystal-chemical constraints and implications for natural systems. Earth and Planetary Science Letters, 176(2): 185-201. doi: 10.1016/S0012-821X(00)00004-2
      Turner, S., Hawkesworth, C., Rogers, N., et al., 1997. 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica et Cosmochimica Acta, 61(22): 4855-4884. doi: 10.1016/S0016-7037(97)00281-0
      Wang, W.L., Aitchison, J.C., Lo, C.H., et al., 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic melange along Bangong-Nujing suture, Central Tibet. Journal of Asian Earth Sciences, 33: 122-138. doi: 10.1016/j.jseaes.2007.10.022
      Williams, H., Turner, S., Kelly, S., et al., 2001. Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342. doi:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2
      Yin, A., Harrison, T.M., 2000. Geological evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
      Yin, A., Harrison, T.M., Ryerson, F.J., et al., 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research, 99(B9): 18175-18201. doi: 10.1029/94JB00504
      Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999. Significant Late Neogene east-west extension in northern Tibet. Geology, 27(9): 787-790. doi:10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
      Zhao, T.P., Zhou, M.F., Zhao, J.H., et al., 2008. Geochronology and geochemistry of the c. 80Ma Rutog granitic pluton, northwestern Tibet: implications for the tectonic evolution of the Lhasa Terrane. Geological Magazine, 145(6): 845-857. doi: 10.1017/S0016756808005025
      曹圣华, 李德威, 余忠珍, 等, 2009. 西藏冈底斯当惹雍错-许如错南北向地堑的特征及成因. 地球科学——中国地质大学学报, 34(6): 914-920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906006.htm
      常承法, 郑锡澜, 潘裕生, 1978. 喜马拉雅的地质发展历史、构造带的划分和隆起原因探讨. 国际交流地质学术论文集(1)——区域构造、地质力学. 北京: 地质出版社, 198-211.
      潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      潘桂棠, 朱弟成, 王立全, 等, 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004
      曲晓明, 王瑞江, 辛洪波, 等, 2009. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学. 地球化学, 38(6): 523-535. doi: 10.3321/j.issn:0379-1726.2009.06.002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (481) PDF downloads(15) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return