• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 6
    Jun.  2011
    Turn off MathJax
    Article Contents
    TANG Dong-jie, SHI Xiao-ying, LI Tao, ZHAO Gui-sheng, 2011. Morphologic Association of Microbially Induced Sedimentary Structures As Paleoenvironment Indicator: An Example from Meso- to Neo-Proterozoic Siliciclastics of Southern North China Platform. Earth Science, 36(6): 1033-1043. doi: 10.3799/dqkx.2011.109
    Citation: TANG Dong-jie, SHI Xiao-ying, LI Tao, ZHAO Gui-sheng, 2011. Morphologic Association of Microbially Induced Sedimentary Structures As Paleoenvironment Indicator: An Example from Meso- to Neo-Proterozoic Siliciclastics of Southern North China Platform. Earth Science, 36(6): 1033-1043. doi: 10.3799/dqkx.2011.109

    Morphologic Association of Microbially Induced Sedimentary Structures As Paleoenvironment Indicator: An Example from Meso- to Neo-Proterozoic Siliciclastics of Southern North China Platform

    doi: 10.3799/dqkx.2011.109
    • Received Date: 2010-05-18
      Available Online: 2021-11-10
    • Publish Date: 2011-06-15
    • Microbially induced sedimentary structures (MISS) are derived from the interaction of microbes and sedimentation by various geological processes, and have been studied more often as biosignature for early life, while their significance in paleoenvironmental analysis has not been adequately studied yet. Our study shows that the Ruyang (Pt2) and Luoyu Groups (Pt3) in the southern North China Platform are dominated by peritidal silisiclastics with abundant MISS, especially those related with mat destruction, and indicates that the morphologic variation and association of MISS are largely influenced by topography. The topography, to some extent, determines the hydrodynamics, substrate exposure duration and water supplement, and exerts influence on mat growth and their destruction, and in turn influence the morphology of MISS, especially in peritidal environments. From the subtidal to supratidal, four zones have been recognized, each of them with its own distinctiveness in MISS morphological association. The subtidal to lower intertidal zone is short of in situ MISS but has some redeposited mat chips, while the upper intertidal is featured by mat protected ripple marks and chips. The lower supertidal is rich in various MISS, especially sand cracks, for its low hydrodynamics, sufficient water supplement and frequently exposed environment, with thick mats, while the upper supertidal abounds smaller sand cracks than those in lower supertidal zone due to relatively thin microbial mats. Thus, Meso- to Neo-proterozoic MISS from the southern North China Platform show that the morphologic association of MISS can be used as good indicators for paleoenvironmental reconstruction.

       

    • loading
    • Banerjee, S., Jeevankumar, S., 2005. Microbially originated wrinkle structures on sandstone and their stratigraphic context: palaeoproterozoic Koldaha Shale, Central India. Sedimentary Geology, 176(1-2): 211-224. doi: 10.1016/j.sedgeo.2004.12.013
      Bose, S., Chafetz, H.S., 2009. Topographic control on distribution of modern microbially induced sedimentary structures (MISS): a case study from Texas coast. Sedimentary Geology, 213(3-4): 136-149. doi: 10.1016/j.sedgeo.2008.11.009
      Bouougri, E.H., Porada, H., 2007. Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. Journal of African Earth Sciences, 48(1): 38-48. doi: 10.1016/j.jafrearsci.2007.03.004
      Eriksson, P.G., Schieber, J., Bouougri, E., et al., 2007. Classification of structures left by microbial mats in their host sediments. In: Schieber, J., Bose, P.K., Eriksson, P.G., et al., eds., Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, 39-52.
      Eriksson, P.G., Simpson, E.L., Eriksson, K.A., et al., 2000. Muddy roll-up structures in siliciclastic interdune beds of the c. 1.8Ga Waterberg Group, South Africa. Palaios, 15(3): 177-183. doi:10.1669/0883-1351(2000)015<0177:MRUSIS>2.0.CO
      Gerdes, G., 2007. Structures left by modern microbial mats in their host sediment's. In: Schieber, J., Bose, P.K., Eriksson, P.G., et al., eds., Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, 5-38.
      Gerdes, G., Klenke, T., Noffke, N., 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology, 47(2): 279-308. doi: 10.1046/j.1365-3091.2000.00284.x
      Gerdes, G., Krumbein, W.E., Reineck, H.E., 1985. The depositional record of sandy, versicolored tidal flats Mellum Island, southern North Sea. Journal of Sedimentary Research, 55(2): 265-278. doi: 10.1306/212F8698-2B24-11D7-8648000102C1865D
      Hardie, L.A., 1977. Sedimentation on the modern carbonate tidal flats of northwest Andros Island, Bahamas. Johns Hopkins University Press, Maryland.
      Lu, S.N., Zhao, G.C., Wang, H.C., et al., 2008. Precambrian metamorphic basement and sedimentary cover of the North China craton: a review. Precambrian Research, 160(1-2): 77-93. doi: 10.1016/j.precamres.2007.04.017
      Mei, M.X., Meng, Q.F., Gao, J.H., 2007. Microbial sand chips in transgressive sandstones of the Precambrian: an example from the Dahongyu Formation at the Huyu section of the Nankou Town in Beijing. Earth Science Frontiers, 14(2): 197-204 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60017-7
      Noffke, N., 1998. Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea). Geology, 26(10): 879-882. doi:10.1130/0091-7613(1998)026<0879:MRMRFB>2.3.CO;2
      Noffke, N., 2005. Geobiology—a holistic scientific discipline. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 1-3. doi: 10.1016/j.palaeo.2004.10.010
      Noffke, N., Beukes, N., Bower, D., et al., 2008. An actualistic perspective into Archean worlds—(cyano-) bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology, 6(1): 5-20. doi: 10.1111/j.1472-4669.2007.00118.x
      Noffke, N., Beukes, N., Gutzmer, J., et al., 2006a. Spatial and temporal distribution of microbially induced sedimentary structures: a case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa. Precambrian Research, 146(1-2): 35-44. doi: 10.1016/j.precamres.2006.01.003
      Noffke, N., Eriksson, K.A., Hazen, R.M., et al., 2006b. A new window into Early Archean life: microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology, 34(4): 253-256. doi: 10.1130/G22246.1
      Noffke, N., Gerdes, G., Klenke, T., 2003. Bethic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Science Review, 62(1-2): 163-176. doi: 10.1016/S0012-8252(02)00158-7
      Noffke, N., Gerdes, G., Klenke, T., et al., 2001a. Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5): 649-656. doi: 10.1306/2DC4095D-0E47-11D7-8643000102C1865D
      Noffke, N., Gerdes, G., Klenke, T., et al., 2001b. Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within recent and Pleistocene coastal facies zones (southern Tunisia). Facies, 44(1): 23-30. doi: 10.1007/BF02668164
      Noffke, N., Krumbein, W.E., 1999. A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology, 46(3): 417-426. doi: 10.1046/j.1365-3091.1999.00218.x
      Pflüger, F., Gresse, P.G., 1996. Microbial sand chips—a non-actualistic sedimentary structure. Sedimentary Geology, 102(3-4): 263-274. doi: 10.1016/0037-0738(95)00072-0
      Porada, H., Bouougri, H.E., 2007. Wrinkle structures—a critical review. Earth Science Reviews, 81(3-4): 199-215. doi: 10.1016/j.earscirev.2006.12.001
      Prave, A.R., 2002. Life on land in the Proterozoic: evidence from the Torridonian rocks of Northwest Scotland. Geology, 30(9): 811-814. doi:10.1130/0091-7613(2002)030<0811:LOLITP>2.0.CO;2
      Qi, Y.A. 2005. Trace fossils from Yumengshan Formation (Ruyang Group) of Lushan Country, Henan Province. Journal of Henan Polytechnic University, 24(1): 33-37 (in Chinese with English absract). http://www.researchgate.net/publication/313191402_Trace_fossils_from_Yumengshan_Formation_Ruyang_Group_of_Lushan_Country_Henan_Province
      Sarkar, S., Banerjee, S., Samanta, P., et al., 2006. Microbial mat-induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga Chorhat sandstone, Vindhyan supergroup, M, P., India. Journal of Earth System Science, 115(1): 49-60. doi: 10.1007/BF02703025
      Sarkar, S., Bose, P.K., Samanta, P., et al., 2008. Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Research, 162(1-2): 248-263. doi: 10.1016/j.precamres.2007.07.019
      Schieber, J., 1998. Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic belt Supergroup, Montana, USA. Sedimentary Geology, 120(1-4): 105-124. doi: 10.1016/S0037-0738(98)00029-3
      Schieber, J., 2004. Microbial mats in the siliciclastic Rock record: a summary of diagnostic features. In: eriksson, P.G., Altermann, W., Nelson, D.R., et al., eds., The Precambrian earth: tempos and events. Developments in Precambrian Geology, 12. Elsevier, Netherlands, 663-673.
      Schieber, J., Bose, P.K., Eriksson, P.G., et al., 2007. Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Netherlands.
      Shi, X.Y., Chen, C.Q., 2006. Microbially induced sedimentary structures (MISS) from the Changcheng Group (ca 1.6 Ga), North China Platform, and their implications for an oxygen-defficient shallow sea environment. In: Yang, Q., Wang, Y., Weldon, E.A., eds., Ancient life and mordern approaches. China University of Science and Technology Press, Hefei, 188-189.
      Shi, X.Y., Wang, X.Q., Jiang, G.Q., et al., 2008. Pervassive microbial mat colonization on Mesoproterozoic peritidal siliciclastic substrates: an example from the Huangqikou Formation (ca 1.6 Ga) in Helan Mountains, NW China. Geological Review, 54(5): 577-586 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200805003.htm
      Wang, H.Z., Shi, X.Y., Wang, X.L., et al., 2000. Research on the sequence stratigraphy of China. Guangdong Science and Technology Press, Guangzhou (in Chinese).
      Yang, S.F., Zhou, H.R., 1995. Trace fossils from the Precambrian Ruyang Group of western Henan. Geological Review, 41(3): 205-210 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199503001.htm
      Zhou, H.R., Wang, Z.Q., Cui, X.S., 1998. Study on sedimentology and sequence stratigraphy of the Mesoproterozoic and Neoproterozoic in the west of Henan Province. Geoscince, 12(1): 17-24 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=3014137
      梅冥相, 孟庆芬, 高金汉, 2007. 前寒武纪海侵砂岩中的微生物砂质碎片: 以北京南口虎峪剖面大红峪组为例. 地学前缘, 14(2): 197-204. doi: 10.3321/j.issn:1005-2321.2007.02.016
      齐永安, 2005. 河南鲁山汝阳群云梦山组遗迹化石. 河南理工大学学报, 24(1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB200501009.htm
      史晓颖, 王新强, 蒋干清, 等, 2008. 贺兰山地区中元古代微生物席成因构造——元古时期微生物群活动的沉积标志. 地质论评, 54(5): 577-586. doi: 10.3321/j.issn:0371-5736.2008.05.001
      王鸿祯, 史晓颖, 王训练, 等, 2000. 中国层序地层研究. 广州: 广东科技出版社.
      杨式溥, 周洪瑞, 1995. 豫西前寒武纪汝阳群遗迹化石. 地质论评, 41(3): 205-210. doi: 10.3321/j.issn:0371-5736.1995.03.002
      周洪瑞, 王自强, 崔新省, 1998. 豫西地区中、新元古代地层沉积特征及层序地层学研究. 现代地质, 12(1): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ801.001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (601) PDF downloads(15) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return