• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 6
    Jun.  2011
    Turn off MathJax
    Article Contents
    LIU Xian-feng, WU Nan, CAI Zhong-xian, ZHAO Wen-guang, Li Yuan, 2011. Pattern of Vertical Fracture Development Controlled by Mechanical Stratigraphy in Carbonate Layer in Xikeer Outcrop Area of Xinjiang Autonomous Region. Earth Science, 36(6): 1125-1133. doi: 10.3799/dqkx.2011.118
    Citation: LIU Xian-feng, WU Nan, CAI Zhong-xian, ZHAO Wen-guang, Li Yuan, 2011. Pattern of Vertical Fracture Development Controlled by Mechanical Stratigraphy in Carbonate Layer in Xikeer Outcrop Area of Xinjiang Autonomous Region. Earth Science, 36(6): 1125-1133. doi: 10.3799/dqkx.2011.118

    Pattern of Vertical Fracture Development Controlled by Mechanical Stratigraphy in Carbonate Layer in Xikeer Outcrop Area of Xinjiang Autonomous Region

    doi: 10.3799/dqkx.2011.118
    • Received Date: 2011-03-10
      Available Online: 2021-11-10
    • Publish Date: 2011-06-15
    • It is supposed that we can effectively predict the fracture density in carbonate layer by studying the pattern of vertical fracture development controlled by mechanical stratigraphy. The latitude of stratum is smooth in Ordovician carbonate in Xikeer outcrop area of Xinjiang autonomous region. Opening-mode fractures (joints) that are perpendicular to bedding are typically controlled by mechanical stratigraphy. After computing amounts and analyzing characteristics of vertical fractures in combination with the results of dividing sedimentary cycle in stratum section of Number 21 (latitude 39°50'17.34″N, longitude 77°28'36.12″E), number 32 (latitude 39°50'18.18″N, longitude 77°28'25.62″E) and number 43 (latitude 39°50'10.88″N, longitude 77°28'26.1″E) in researching outcrop area, we identify the distribution characteristics of different mechanical interfaces and based on which we calculate the fracture density controlled by different mechanical units in each section. The average of fracture density of section 21 is 7.1 per meter which is larger than 2.9 per meter of section 43 and 2.2 per meter of section 32. At the same time, we study the dominating factors of fracture density differences in different section from lithological characteristics, thickness of mechanical unit and stress state. It shows that fracture density increases as the content of mudstone is higher in limestone in carbonate stratigraphy and fracture density is sharply lower in grain limestone than that in mudstone. On the other hand, because of the influence of stress shadow, the thickness of mechanical unit has negative correlation with fracture density: the thicker the mechanical unit is, the less the fracture density is. Fracture saturation in section 43 and section 32 is larger than 0.8, which shows they have approached fracture saturated state. However, the section 21 that has the largest fracture density is of unsaturated state, with a fracture saturation of mere 0.6. Therefore, the average fracture has negative correlation with fracture saturation.

       

    • loading
    • Atkinson, T.C., 1977. Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). Journal of Hydrology, 35(1-2): 93-110. doi: 10.1016/0022-1694(77)90079-8
      Bai, T., Pollard, D.D., 2000a. Fracture spacing in layered rocks: a new explanation based on the stress transition. Journal of Structural Geology, 22(1): 43-57. doi: 10.1016/S0191-8141(99)00137-6
      Bai, T., Pollard, D.D., 2000b. Closely spaced fractures in layered rocks: initiation mechanism and propagation kinematics. Journal of Structural Geology, 22(10): 1409-1425. doi: 10.1016/S0191-8141(00)00062-6
      Bai, T., Pollard, D.D., Gao, H.J., 2000. Spacing of edge fractures in layered materials. International Journal of Fracture, 103(4): 373-395. doi: 10.1023/A:1007659406011
      Becker, A., Gross, M.R., 1996. Mechanisms for joint saturation in mechanically layered rocks: an example from southern Israel. Tectonophysics, 257(2-4): 223-237. doi: 10.1016/0040-1951(95)00142-5
      Cooke, M.L., Simo, J.A., Underwood, C.A., et al., 2006. Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sedimentary Geology, 184(3-4): 225-239. doi: 10.1016/j.sedgeo.2005.11.004
      Cooke, M.L., Underwood, C.A., 2001. Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening. Journal of Structural Geology, 23(2-3): 223-238. doi: 10.1016/S0191-8141(00)00092-4
      Corbett, K.P., Friedman, M., Spang, J., 1987. Fracture development and mechanical stratigraphy of Austin Chalk, Texas. AAPG Bulletin, 71(1): 17-28. doi: 10.1306/94886D35-1704-11D7-8645000102C1865D
      Engelder, T., Gross, M.R., Pinkerton, P., 1997. An analysis of joint development in thick sandstone beds of the Elk basin anticline, Montana-Wyoming. In: Hoak, T., Klawitter, A., Blomquist, P., eds., Fractured reservoirs characterization and modeling guidebook. Rocky Mountain Association of Geologists, Denver, Colorado, 1-18.
      Eyssautier-Chuine, S., Odonne, F., Massonnat, G., 2002. Control of bioclast abundance on natural joint density in carbonate rocks: data from Oman, Provence and Languedoc (France). Terra Nova, 14(3): 198-204. doi: 10.1046/j.1365-3121.2002.00411.x
      Friedman, M., Kwon, O., French, V.L., 1994. Containment of natural fractures in brittle beds of the Austin Chalk, rock mechanics, models and measurements challenges from industry. In: Nelson, P.P., Laubach, S.E., eds., Proceedings of the 1st North American Rock Mechanics Symposium. Balkema, Texas, Austin, 833-840.
      Gross, M.R., 1993. The origin and spacing of cross joints: example from the Monterey Formation, Santa Barbara Coastline, California. Journal of Structural Geology, 15(6): 737-751. doi: 10.1016/0191-8141(93)90059-J
      Gross, M.R., Fischer, M.P., Engelder, T., et al., 1995. Factors controlling joint spacing in interbedded sedimentary rocks: integrating numerical models with field observations from the Monterey Formation, USA. In: Ameen, M.S., ed., Fractography: fracture topography as a tool in fracture mechanics and stress analysis. Geological Society Special Publication, London, 92: 215-233. doi: 10.1144/1995.092.01.12
      Hanks, C.L., Lorenz, J., Teufel, L., et al., 1997. Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, northeastern Brooks Range and North Slope subsurface, Alaska. AAPG Bulletin, 81(10): 1700-1720. http://www.researchgate.net/publication/308485684_Lithologic_and_Structural_Controls_on_Natural_Fracture_Distribution_and_Behavior_Within_the_Lisburne_Group_Northeastern_Brooks_Range_and_North_Slope_Subsurface_Alaska
      Harris, J.F., Taylor, G.L., 1960. Relation of deformational fractures in sedimentary rocks to regional and local structure. AAPG Bulletin, 44(12): 1853-1873. doi: 10.1306/0BDA6257-16BD-11D7-8645000102C1865D
      Hennings, P.H., Olson, J.E., Thompson, L.B., 2000. Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs: an example from Wyoming. AAPG Bulletin, 84(6): 830-849. doi: 10.1306/A967340A-1738-11A7-8645000102A1865D
      Hillis, R.R., 1998. The influence of fracture stiffness and the in situ stress field on the closure of natural fractures. Petroleum Geoscience, 4(1): 57-65. doi: 10.1144/petgeo.4.1.57
      Hobbs, D.W., 1967. The formation of tension joints in sedimentary rocks, an explanation. Geological Magazine, 104(6): 550-556. doi: 10.1017/s0016756800050226
      Huang, G.Y., Lu, S.F., Yang, F.P., 2003. Application of curvature method to fissure forecast of the Yingcheng Formation stratum of Xujiaweizi fault depression. Journal of Daqing Petroleum Institute, 27(4): 9-11 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=8707244
      Huang, Q., Angelier, J., 1989. Fracture spacing and its relation to bed thickness. Geological Magazine, 126(4): 355-362. doi: 10.1017/s0016756800006555
      Ladeira, F.L., Price, N.J., 1981. Relationship between fracture spacing and bed thickness. Journal of Structural Geology, 3(2): 179-183. doi: 10.1016/0191-8141(81)90013-4
      Laubach, S.E., 2003. Practical approaches to identifying sealed and open fractures. AAPG Bulletin, 87(4): 561-579. doi: 10.1306/11060201106
      Lézin, C., Odonne, F., Massonnat, G.J., et al., 2009. Dependence of joint spacing on rock properties in carbonate strata. AAPG Bulletin, 93(2): 271-290. doi: 10.1306/09150808023
      Li, Z.Y., Zeng, Z.X., Luo, W.Q., 2004. Curvature analysis and fracture estimating of folds—a case study of Wangchang fold in Jianghan basin. Journal of Jilin University (Earth Science Edition), 34(4): 517-521 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ200404005.htm
      Ma, D.M., Chen, J.L., Zeng, C.M., et al., 2007. Structural deformation characteristics of the Kalpin thrust belt on the Northwestern margin of the Tarim basin. Journal of Geomechanics, 13(4): 340-347 (in Chinese with English abstract). http://www.cqvip.com/QK/98414X/2007004/26597623.html
      Masaferro, J.L., Bulnes, M., Poblet, J., et al., 2003. Kinematic evolution and fracture prediction of the Valle Morado structure inferred from 3-D seismic data, Salta Province, Northwest Argentina. AAPG Bulletin, 87(7): 1083-1104. doi: 10.1306/02070301102
      McQuillan, H., 1973. Small-scale fracture density in Amari Formation of Southwest Iran and its relation to bed thickness and structural setting. AAPG Bulletin, 57(12): 2367-2385. http://aapgbull.geoscienceworld.org/content/57/12/2367
      Murray, G.H., 1968. Quantitative fracture study—sanish pool, Mckenzie county, North Dakota. AAPG Bulletin, 52(1): 57-65. http://www.researchgate.net/publication/270483544_Quantitative_Fracture_Study--Sanish_Pool_McKenzie_County_North_Dakota_ABSTRACT
      Nelson, R.A., Co, A.P., 1982. An approach to evaluating fractured reservoirs. Journal of Petroleum Technology, 34(9): 2167-2177. doi: 10.2118/10331-PA
      Pollard, D.D., Segall, P., 1987. Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. In: Atkinson, B.K., ed., Fracture mechanics of rock. Academic Press, London, 277-349.
      Rijken, P., Cooke, M.L., 2001. Role of shale thickness on vertical connectivity of fractures application of crack-bridging theory to the Austin Chalk, Texas. Tectonophysics, 337(1-2): 117-133. doi: 10.1016/S0040-1951(01)00107-X
      Stauffer, M.R., Gendzwill, D.J., 1987. Fractures in the Northern Plains, stream patterns, and the Midcontinent stress field. Canadian Journal of Earth Sciences, 24(6): 1086-1097. doi: 10.1139/e87-106
      Sun, S.R., 2003. Application comparison of two curvature methods for predicating reservoir fractures. Geological Science and Technology Information, 22(4): 71-74 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dzkjqb200304013
      Teufel, L.W., Clark, J.A., 1984. Hydraulic fracture propagation in layered rock: experimental studies of fracture containment. Society of Petroleum Engineers Journal, 24(1): 19-32. doi: 10.2118/9878-PA
      Underwood, C.A., Cooke, M.L., Simo, J.A., et al., 2003. Stratigraphic controls on vertical fracture patterns in Silurian dolomite, northeastern Wisconsin. AAPG Bulletin, 87(1): 121-142. doi: 10.1306/072902870121
      Vermilye, J.M., Scholz, C.H., 1995. Relation between vein length and aperture. Journal of Structural Geology, 17(3): 423-434. doi: 10.1016/0191-8141(94)00058-8
      Wall, B.R.G., Girbacea, R., Mesonjesi, A., et al., 2006. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt. AAPG Bulletin, 90(8): 1227-1249. doi: 10.1306/03280604014
      Wiltschko, D.V., Medwedeff, D.A., Millson, H.E., 1985. Distribution and mechanisms of strain within rocks on the northwest ramp of Pine Mountain block, southern Appalachian foreland: a field test of theory. Geological Society of America Bulletin, 96(4): 426-435. doi: 10.1130/0016-7606(1985)96<426:DAMOSW>2.0.CO;2
      Wu, H., Pollard, D.D., 1995. An experimental study of the relationship between joint spacing and layer thickness. Journal of Structural Geology, 17(6): 887-905. doi: 10.1016/0191-8141(94)00099-l
      Yang, G., Guo, H., 2003. Superposed relationship between Kalping thrust belt and Bachu uplift, Northwest Tarim. Uranium Geology, 19(1): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200301000.htm
      Zhang, C., Zheng, D.M., Li, J.H., 2001. Attribute of Paleozoic structures and its evolution characteristics in Keping fault-uplift. Oil & Gas Geology, 22(4): 315-318 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_syytrqdz200104006.aspx
      黄光玉, 卢双舫, 杨峰平, 2003. 曲率法在松辽盆地徐家围子断陷营城组地层裂缝预测中的应用. 大庆石油学院学报, 27(4): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY200304002.htm
      李志勇, 曾佐勋, 罗文强, 2004. 褶皱构造的曲率分析及其裂缝估算——以江汉盆地王场褶皱为例. 吉林大学学报(地球科学版), 34(4): 517-521. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200404005.htm
      马德明, 陈江力, 曾昌民, 等, 2007. 塔里木盆地西北缘柯坪冲断带的构造变形特征. 地质力学学报, 13(4): 340-347. doi: 10.3969/j.issn.1006-6616.2007.04.007
      孙尚如, 2003. 预测储层裂缝的两种曲率方法应用比较. 地质科技情报, 22(4): 71-74. doi: 10.3969/j.issn.1000-7849.2003.04.013
      杨庚, 郭华, 2003. 塔里木盆地西北缘柯坪逆冲构造带与巴楚隆起的叠加关系. 铀矿地质, 19(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200301000.htm
      张臣, 郑多明, 李江海, 2001. 柯坪断隆古生代的构造属性及其演化特征. 石油与天然气地质, 22(4): 315-318. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200104005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (590) PDF downloads(18) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return