Citation: | WEN Zhang, HUANG Guan-hua, LIU Zhuang-tian, LI Jian, 2011. An Approximate Analytical Solution for Two-Region Non-Darcian Flow Toward a Well in a Leaky Aquifer. Earth Science, 36(6): 1165-1172. doi: 10.3799/dqkx.2011.123 |
Camacho, V.R.G., Vásquez, C.M., 1992. Comment on "analytical solution incorporating nonlinear radial flow in confined aquifers" by Zekai Sen. Water Resources Research, 28(12): 3337-3338. doi: 10.1029/92WR01646
|
Chang, A.D., Guo, J.Q., Wang, H.S., 2000. The analytical solution of unsteady well flow with two flow regimes. Journal of Hydraulic Engineering, 6: 49-53 (in Chinese with English abstract). doi: 10.1080/09715010.2000.10514679
|
Hantush, M.S., Jacob, C.E., 1955. Non-steady radial flow in an infinite leaky aquifer. Transactions, American Geophysical Union, 36(1): 95-100. doi: 10.1029/TR036i001p00095
|
Liu, Y.H., Chang, A.D., 2005. Research on unsteady well flow of the specific discharge of the nonlinear regime. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 33(8): 113-115 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=20015341
|
Liu, Y.H., Chang, A.D., Deng, Q.X., 2005. Drawdown of well flow in the co-existed linear and nonlinear exponents. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 33(3): 157-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBNY200503026.htm
|
Mathias, S.A., Butler, A.P., Zhan, H.B., 2008. Approximate solutions for forchheimer flow to a well. Journal of Hydraulic Engineering, 134(9): 1318-1325. doi: 10.1061/(ASCE)0733-9429(2000)134.9
|
Sen, Z., 1987. Non-Darcian flow in fractured rocks with a linear flow pattern. Journal of Hydrology, 92(1-2): 43-57. doi: 10.1016/0022-1694(87)90088-6
|
Sen, Z., 1988. Type curves for two-region well flow. Journal of Hydraulic Engineering, 114(12): 1461-1484. doi: 10.1061/(ASCE)0733-9429(1988)114.12
|
Sen, Z., 1989. Nonlinear flow toward wells. Journal of Hydraulic Engineering, 115(2): 193-209. doi: 10.1061/(ASCE)0733-9429(1989)115.2(193)
|
Sen, Z., 1990. Nonlinear radial flow in confined aquifers toward large-diameter wells. Water Resources Research, 26(5): 1103-1109. doi: 10.1029/WR026i005P01103
|
Stehfest, H., Goethe-Univ, J.W., Germany, W., 1970a. Algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(1): 47-49. doi: 10.1145/361953.361969
|
Stehfest, H., Goethe-Univ, J.W., Germany, W., 1970b. Remark on algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(10): 624-625. doi: 10.1145/355598.362787
|
Wang, P.J., 1996. Theory for two-regime well flow in confined aquifers. Journal of Irrigation and Drainage, 15(4): 1-9 (in Chinese with English abstract).
|
Wen, Z., Huang, G.H., Zhan, H.B., 2006. Non-Darcian flow in a single confined vertical fracture toward a well. Journal of Hydrology, 330(3-4): 698-708. doi: 10.1016/j.jhydrol.2006.05.001
|
Wen, Z., Huang, G.H., Zhan, H.B., 2008a. Non-Darcian flow to a well in an aquifer-aquitard system. Advances in Water Resources, 31(12): 1754-1763. doi: 10.1016/j.advwatres.2008.09.002
|
Wen, Z., Huang, G.H., Zhan, H.B., 2008b. An analytical solution for non-Darcian flow in a confined aquifer using the power law function. Advances in Water Resources, 31(1): 44-55.10.1016/j. advwatres. 2007.06.002 doi: 10.1016/j.advwatres.2007.06.002
|
Wen, Z., Huang, G.H., Zhan, H.B., et al., 2008c. Two-region non-Darcian flow toward a well in a confined aquifer. Advances in Water Resources, 31(5): 818-827. doi: 10.1016/j.advwatres.2008.01.004
|
Wen, Z., Huang, G.H., Li, J., et al., 2009a. A numerical solution of non-Darcian flow toward an extended well in a confined aquifer. Journal of Hydraulic Engineering, 40(4): 398-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200904004.htm
|
Wen, Z., Huang, G.H., Li, J., et al., 2009b. A numerical solution for non-Darcian flow toward a well in a leaky aquifer. Chinese Journal of Hydrodynamics, 24(4): 448-454 (in Chinese with English abstract). http://www.researchgate.net/publication/287464153_A_numerical_solution_for_non-Darcian_flow_toward_a_well_in_a_leaky_aquifer
|
Wu, Y.S., 2001. Non-darcy displacement of immiscibe fluids in porous media. Water Resources Research, 37(12): 2943-2950. doi: 10.1029/2001WR000389
|
Wu, Y.S., 2002. Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs. Transport in Porous Media, 49(2): 209-240. doi: 10.1023/A:1016018020180
|
常安定, 郭建青, 王洪胜, 2000. 两种流态区域条件下的井流问题的解析解. 水利学报, 6: 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200006008.htm
|
刘元会, 常安定, 2005. 非线性渗流区域井流问题渗流速度的分区研究. 西北农林科技大学学报(自然科学版), 33(8): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200508034.htm
|
刘元会, 常安定, 邓秋霞, 2005. 线性非线性并存区域井流问题的水头降深研究. 西北农林科技大学学报(自然科学版), 33(3): 157-160. doi: 10.3321/j.issn:1671-9387.2005.03.037
|
王鹏举, 1996. 考虑非达西流情况下地下水向集水建筑物运动的非稳定理论的研究. 灌溉排水, 15(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS604.000.htm
|
文章, 黄冠华, 李健, 等, 2009a. 承压含水层中扩展井附近非达西流数值解. 水利学报, 40(4): 398-402. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200904004.htm
|
文章, 黄冠华, 李健, 等, 2009b. 越流含水层中抽水井附近非达西流动模型的数值解. 水动力学研究与进展, 24(4): 448-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200904010.htm
|