Citation: | SHEN Zhao-li, WANG Yan-xin, GUO Hua-ming, 2012. Opportunities and Challenges of Water-Rock Interaction Studies. Earth Science, 37(2): 207-219. doi: 10.3799/dqkx.2012.021 |
Beard, B.L., Johnson, C.M., Cox, L., et al., 1999. Iron isotope biosignatures. Science, 285: 1889-1892. doi: 10.1126/science.285.5435.1889
|
Berg, M., Trang, P.T.K., Stengel, C., et al., 2008. Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249: 91-112. doi: 10.1016/j.chemgeo.2007.12.007
|
Blyth, A.R., Frape, S.K., Tullborg, E.L., 2009. A review and comparison of fracture mineral investigations and their application to radioactive waste disposal. Applied Geochemistry, 24: 821-835. doi: 10.1016/j.earscirev.2005.07.003
|
Brown, G.E. Jr., Foster, A.L., Ostergren, J.D., 1999. Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc. Natl. Acad. Sci. 96: 3388-3395. doi: 10.1073/pnas.96.7.3388
|
Dempster, H.S., Lollar, B.S., Feenstra, S., 1997. Tracing organic contaminants in groundwater: a new methodology using compound-specific isotopic analysis. Environ. Sci. Technol., 31(11): 3193-3197. doi: 10.1021/es9701873
|
Edmunds, W.M., Bath, A.H., Miles, D.L., 1982. Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochimica et Cosmochimica Acta, 46: 2069-2081. doi: 10.1016/0016-7037(82)90186-7
|
Edmunds, W.M., 1995. Geological indicators in the groundwater environment of rapid environmental changes. In: Chudaev, O.V., ed., Proceedings of the Eighth International Symposium on Water-rock Interaction. Rotterdam, Balkema.
|
Edmunds, W.M., 2009. Geochemistry's vital contribution to solving water resource problems. Applied Geochemistry, 24: 1058-1073. doi: 10.1016/j.apgeochem.2009.02.021
|
Ellis, A.J., Mahon, W.A.J., 1964. Natural hydrothermal systems and experimental hot-water/rock interactions. Geochimica et Cosmochimica Acta, 28(8): 1323-1357. doi: 10.1016/0016-7037(64)90132-2
|
Farhadian, M., Vachelard, C., Duchez, D., et al., 2008. In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology, 99: 5296-5308. doi: 10.1016/j.biortech.2007.10.025
|
Foster, A.L., Brown, G.E. Jr., Tingle, T.N., et al., 1998. Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. American Mineralogist, 83: 553-568. doi: 10.2138/am-1998-5-616
|
García-Gutiérrez, M., Cormenzana, J.L., Missana, T., et al., 2006. Large-scale laboratory diffusion experiments in clay rocks. Physics and Chemistry of the Earth, 31(10-14): 523-530. doi: 10.1016/j.pce.2006.04.004
|
Gault, A.G., Polya, D.A., Lythgoe, P.R., et al., 2003. Arsenic speciation in surface waters and sediments in a contaminated waterway: an IC-ICP-MS and XAS based study. Applied Geochemistry, 18: 1387-1397. doi: 10.1016/S0883-2927(03)00058-1
|
Gaus, I., 2010. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control, 4: 73-89. doi: 10.1016/j.ijggc.2009.09.015
|
Guo, H.M., Zhang, B., Li, Y., et al., 2011. Hydrogeological and biogeochemical constrains of As mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ. Pollu., 159: 876-883. doi: 10.1016/j.envpol.2010.12.029
|
Harrington, R.R., Poulson, S.R., Drever, J.I., et al., 1999. Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Org. Geochem., 30(8): 765-775. doi: 10.1016/S0146-6380(99)00059-5
|
Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., et al., 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science, 298: 1602-1606. doi: 10.1126/science.1076978
|
Helgeson, H.C., 1968. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic reactions. Geochimica et Cosmochimica Acta, 32: 853-877. doi: 10.1016/0016-7037(68)90100-2
|
Helgeson, H.C., Garrels, R.M., Mackenzie, F.T., 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. Ⅱ. Applications. Geochimica et Cosmochimica Acta, 33: 455-481. doi: 10.1016/0016-7037(69)90127-6
|
Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water. US Geol. Surv. Water Supply Paper 2254, third ed. (first ed., 1959; second ed., 1970). University Press of the Pacific.
|
Herbert, Jr. R.B., Schippers, A., 2008. Iron isotope fractionation by biogeochemical processes in mine tailings. Environ. Sci. Technol., 42: 1117-1122. doi: 10.1021/es071616s
|
Hofstetter, T.B., Spain, J.C., Nishino, S.F., et al., 2008. Identifying competing aerobic nitrobenzene biodegradation pathways using compound-specific isotope analysis. Environ. Sci. Technol, 42(13): 4764-4770. doi: 10.1021/es8001053
|
Hudson-Edwards, K.A., Jamieson, H.E., Charnock, J.M., et al., 2005. Arsenic speciation in waters and sediment of ephemeral floodplain pools, Rios Agrio-Guadiamar, Aznalcollar, Spain. Chemical Geology, 219: 175-192. doi: 10.1016/j.chemgeo.2005.02.001
|
Islam, F.S., Gault, A.G., Boothman, C., et al., 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430: 68-71. doi: 10.1038/nature02638
|
Kharaka, Y.K., Berry, F.A.F., 1974. Influence of geological membranes on the geochemistry of subsurface waters from miocene sediments at kettleman north dome in California. Water Resources Research, 10(2): 313-327. doi: 10.1029/WR010i002p00313
|
Kharaka, Y.K., Cole, D.R., Hovorka, S.D., et al., 2006. Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology, 34: 577-580. doi: 10.1130/G22357.1
|
Kim, E.J., Batchelor, B., 2009. Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite. Environ. Sci. Technol., 43: 2899-2904. doi: 10.1021/es803114g
|
Kopinke, F.D., Georgi, A., Voskamp, M., et al., 2005. Carbon isotope fractionation of organic contaminants due to retardation on humic substances: implications for natural attenuation studies in aquifers. Environ. Sci. Technol., 39(16): 6052-6062. doi: 10.1021/es040096n
|
Kuder, T., Wilson, J.T., Kaiser, P., et al., 2005. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ. Sci. Technol., 39(1): 213-220. doi: 10.1021/es040420e
|
Lemieux, J., 2011. Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeology Journal, 19: 757-778. doi: 10.1007/s10040-011-0715-4
|
Li, Y., Wang, Y., Deng, A., 2001. Paleoclimate record and paleohydrogeological analysis of travertine from the Niangziguan karst springs, northern China. Science in China (Series E), 44: 114-118. doi: 10.1007/BF02916800
|
Newman, D.K., Banfield, J.F., 2002. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science, 296: 1071-1077. doi: 10.1126/science.1010716
|
Nickson, R., McArthur, J., Burgess, W., et al., 1998. Arsenic poisoning of Bangladesh groundwater. Nature, 395: 338. doi: 10.1038/26387
|
Parbs, A., Ebert, M., Dahmke, A., 2007. Einfluss der Mineralpräzipitation auf die Funktionalität und Langzeiteffektivität von FeO-Reaktionswänden-Ein Review anhand von 19 FeO-Reaktionswandstandorten. Grundwasser-Zeitschrift der Fachsektion Hydrogeologie, 12: 267-281. doi: 10.1007/s00767-007-0043-8
|
Ramos, M.A.V., Yan, W., Li, X., et al., 2009. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. The Journal of Physical Chemistry C, 113: 14591-14594. doi: 10.1021/jp9051837
|
Reysenbach, A., Shock, E., 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296: 1077-1082. doi: 10.1126/science.1072483
|
Rowland, H.A.L., Gault, A.G., Charnock, J.M., et al., 2005. Preservation and XANES determination of the oxidation state of solid-phase arsenic in shallow sedimentary aquifers in Bengal and Cambodia. Mineralogical Magazine, 69(5): 825-839. doi: 10.1180/0026461056950291
|
Rowland, H.A.L., Omoregie, E.O., Millot, R., 2011. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian basin (Hungary and Romania). Applied Geochemistry, 26: 1-17. doi: 10.1016/j.apgeochem.2010.10.006
|
Schmidt, T.C., Zwank, L., Elsner, M., et al., 2004. Compound specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal. Bioanal. Chem., 378(2): 283-300. doi: 10.1007/s00216-003-2350-y
|
Senn, D.B., Hemond, H.F., 2002. Nitrate controls on iron and arsenic in an urban lake. Science, 296: 2373-2376. doi: 10.1126/science.1072402
|
Shen, K., 1975. Brush talks from dream brook (natural science part). Translated by Li, Q. . Science Press, Beijing (in Chinese).
|
Shen, Z.L., 1991. More attention should be paid to water-rock interaction studies. Hydrogeology and Engineering Geology, 18(2): 1 (in Chinese).
|
Shen, Z.L., Liu, G.Y., Yang, C.T., et al., 1982. Hydrogeology. Science Press, Beijing (in Chinese).
|
Shen, Z.L., Wang, Y.X., 2002. Review and outlook of water-rock interaction studies. Earth Science—Journal of China University of Geosciences, 27(2): 127-132 (in Chinese with English abstract). http://www.researchgate.net/publication/296589975_Review_and_outlook_of_water-rock_interaction_studies
|
Staubwasser, M., von Blanckenburg, F., Schoenberg, R., 2006. Iron isotopes in the early marine diagenetic iron cycle. Geology, 34: 629-632. doi: 10.1130/G22647.1
|
Tokarev, I.V., Zubkov, A.A., Rumynin, V.G., et al., 2009. Assessment of the long-term safety of radioactive waste disposal: 2. Isotopic study of water exchange in a multilayer system. Water Resources, 36: 345-356. doi: 10.1134/S0097807809030105
|
van Geen, A., 2011. International drilling to recover aquifer sands (IDRAs) and arsenic contaminated groundwater in Asia. Scientific Drilling, 12: 49-52. doi: 10.2204/iodp.sd.12.06.2011
|
Wang, J., 2008. Geological disposal of high level radio active waste: progress and challenges. China Engineering Science, 10: 58-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX200803011.htm
|
Wang, J.Y., 1968. Historical data of China geology. Science Press, Beijing (in Chinese).
|
Wang, Y.X., Ma, T., Guo, Q.H., 2005. Study on groundwater and environmental change. Earth Science Frontiers, 12(Special): 14-21 (in Chinese with English abstract).
|
Witherspoon, P., 2002. Geological challenges in radioactive waste isolation—third worldwide review. Lawrence Berkeley National Laboratory, LBNL-49767, Berkeley, USA.
|
Yi, S.P., Ma, H.Y., Zheng, C.M., 2011. Advances in research on disposal of radioactive waste. Acta Geoscientica Sinica, 32: 592-600 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201105014.htm
|
Yu, T.T., Gan, Y.Q., Liu, C.F., et al., 2011. Advances in multidimensional compound-specific stable isotope analysis method for studies of groundwater organic contamination. Hydrogeology and Engineering Geology, 38: 103-109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201101023.htm
|
Yuan, D.X., 1995. Karst and global change studies. Advances in Earth Science, 10(5): 471-474 (in Chinese with English abstract).
|
Zhang, R.Q., Liang, X., Jin, M.G., et al., 2011. Fundamentals of hydrogeology(Sixth edition). Geological Publishing House, Beijing (in Chinese).
|
Zheng, L., Apps, J.A., Zhang, Y., et al., 2009. On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chemical Geology, 268: 281-297. doi: 10.1016/j.chemgeo.2009.09.007
|
Zhou, H., Greig, A., You, C., et al., 2011. Arsenic in a speleothem from Central China: stadial-interstadial variations and implications. Environ. Sci. Technol., 45: 1278-1283. doi: 10.1021/es1032103
|
沈括, 1975. 梦溪笔谈(自然科学部分). 李群, 注译. 北京: 科学出版社.
|
沈照理, 刘光亚, 杨成田, 等, 1982. 水文地质学. 北京: 科学出版社.
|
沈照理, 1991. 应该重视水—岩相互作用的研究. 水文地质工程地质, 18(2): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199102001.htm
|
沈照理, 王焰新, 2002. 水—岩相互作用研究的回顾与展望. 地球科学——中国地质大学学报, 27(2): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200202002.htm
|
王驹, 2008. 高放废物地质处置: 进展与挑战. 中国工程科学, 10: 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200803011.htm
|
王嘉荫, 1968. 中国地质史料. 北京: 科学出版社.
|
王焰新, 马腾, 郭清海, 等, 2005. 地下水与环境变化研究. 地学前缘, 12(特刊): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S1002.htm
|
余婷婷, 甘义群, 刘存富, 等, 2011. 基于单体多维稳定同位素分析的地下水有机污染研究进展. 水文地质工程地质, 38(1): 103-109. doi: 10.3969/j.issn.1000-3665.2011.01.019
|
袁道先, 1995. 岩溶与全球变化研究. 地球科学进展, 10(5): 471-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ505.013.htm
|
易树平, 马海毅, 郑春苗, 2011. 放射性废物处置研究进展. 地球学报, 32: 592-600. doi: 10.3975/cagsb.2011.05.09
|
张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础(第六版). 北京: 地质出版社.
|