• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 2
    Mar.  2012
    Turn off MathJax
    Article Contents
    HUANG Yuan-ying, LIU Dan-dan, LI Gui-rong, 2012. Adsorption Kinetics of As (III) from Groundwater by Nanoscale Zero-Valent Iron. Earth Science, 37(2): 294-300. doi: 10.3799/dqkx.2012.032
    Citation: HUANG Yuan-ying, LIU Dan-dan, LI Gui-rong, 2012. Adsorption Kinetics of As (III) from Groundwater by Nanoscale Zero-Valent Iron. Earth Science, 37(2): 294-300. doi: 10.3799/dqkx.2012.032

    Adsorption Kinetics of As (III) from Groundwater by Nanoscale Zero-Valent Iron

    doi: 10.3799/dqkx.2012.032
    • Received Date: 2010-09-20
    • Publish Date: 2012-03-15
    • Artificial synthesized nanoscale zero-valent iron (NZVI) was used in the laboratory for the removal of As(Ⅲ). The average BET surface area of particles was 49.16 m2/g, with a diameter in the range of 20-40 nm. Batch experiments were carried out to study the efficiency of inorganic arsenic removal and adsorption kinetics by NZVI. The results show that As (Ⅲ) can be removed efficiently by NZVI at pH 7, 20℃. The removal rate for As (Ⅲ) is over 99% within 60 minutes by reacting 910 μg/L As (Ⅲ) with 0.1 g NZVI. The As (Ⅲ) adsorption process follows the pseudo-first-order kinetic expression. The surface-area-normalized rate coefficient kSA is 2.6 mL·m-2·min-1 for As (Ⅲ). The equilibrium adsorption data fit Langmuir and Freundlich adsorption model well, with values of the constants at the regression coefficient (R2 > 0.95) for both models. The monolayer adsorption capacity of the sorbent, as obtained from the Langmuir isotherm, 76.3 mg/g is of NZVI. 21% As (Ⅲ) adsorpted on NZVI was found to desorption by sodium hydroxide solution (0.1 M). The effect of competing anions shows SiO32- and H2PO4- markedly decrease with the removal of As (III), while the effect of other anions is insignificant. The mechanism of As removal is adsorption and coprecipitation.

       

    • loading
    • Bang, S., Johnson, M.D., Korfiatis, G.P., et al., 2005a. Chemical reactions between arsenic and zero-valent iron in water. Water Res. , 39(5): 763-770. doi: 10.1016/j.watres.2004.12.022
      Bang, S., Korfiatis, G.P., Meng, X.G., 2005b. Removal of arsenic from water by zero-valent iron. J. Hazard. Mater. , 121(1-3): 61-67. doi: 10.1016/j.jhazmat.2005.01.030
      Boddu, V.M., Abburi, K., Talbott, J.L., et al., 2008. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res. , 42(3): 633-642. doi: 10.1016/j.watres.2007.08.014
      Cumbal, L., Greenleaf, J., Leun, D., et al., 2003. Polymer supported inorganic nanoparticles: characterization and environmental applications. React. Funct. Polym. , 54(1-3): 167-180. doi: 10.1016/S1381-5148(02)00192-X
      Diamadopoulos, E., Ioanidis, S., Sakellaropoulos, G.P., 1993. As (V) removal from aqueous solutions by fly ash. Water Res. , 27(12): 1773-1777. doi: 10.1016/0043-1354(93)90116-Y
      Farquhar, M.L., Charnock, J.M., Livens, F.R., et al., 2002. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lpidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. Environ. Sci. Technol. , 36(8): 1757-1762. doi: 10.1021/es010216g
      Farrell, J., Wang, J.P., O'Day, P., et al., 2001. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environ. Sci. Technol. , 35(10): 2026-2032. doi: 10.1021/es0016710
      Giménez, J., Martinez, M., de Pablo, J., et al., 2007. Arsenic sorption on to natural hematite, magnetite and goethite. J. Hazard. Mater. , 141(3): 575-580. doi: 10.1016/j.jhazmat.2006.07.020
      Guo, H.M., Stüben, D., Berner, Z., 2007. Adsorption of arsenic (III) and arsenic (V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1): 47-53. doi: 10.1016/j.jcis.2007.06.035
      Guo, X., Chen, F., 2005. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol. , 39(17): 6808-6818. doi: 10.1021/es048080k
      Huang, Y.Y., Liu, D.D., Liu, F., 2009a. Arsenic (III) removal from drinking water by nanoscale zero-valent iron. Ecology and Environmental Sciences, 18(1): 83-87 (in Chinese with English abstract).
      Huang, Y.Y., Qin, Z., Liu, F., 2009b. Removal of As (Ⅲ) and As (V) from drinking water by nanoscale zero valent iron. Rock and Mineral Analysis, 28(6): 529-534 (in Chinese with English abstract). doi: 10.1109/CESCE.2010.232
      Huang, C.P., Fu, P.L., 1984. Treatment of arsenic(V)-containing water by activated carbon process. Journal Water Pollution Control Federation, 56(3): 233-242.
      Kanel, S.R., Manning, B., Charlet, L., et al., 2005. Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. , 39(5): 1291-1298. doi: 10.1021/es048991u
      Korte, N.E., Fernando, Q., 1991. A review of arsenic (III) in groundwater. Critical Reviews in Environmental Control, 21(1): 1-39. doi: 10.1080/10643389109388408
      Kundu, S., Gupta, A.K., 2006. Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chem. Eng. J. , 122 (1-2): 93-106. doi: 10.1016/j.cej.2006.06.002
      Lien, H.L., Wilkin, R., 2005. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere, 59(3): 377-386. doi: 10.1016/j.chemosphere.2004.10.055
      Lumsdon, D.O., Evans, L.J., 1994, Surface complexation model parameters for goethite (α-FeOOH). J. Colloid Interface Sci. , 164 (1): 119-125. doi: 10.1006/jcis.1994.1150
      Manning, B.A., Hunt, M.L., Amrhein, C., et al., 2002. Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. , 36(24): 5455-5461. doi: 10.1021/es0206846
      Masscheleyn, P.H., DeLaune, R.D., Patrick, W.H., 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. , 25(8): 1414-1419. doi: 10.1021/es00020a008
      Melitas, N., Wang, J., Conklin, M., et al., 2002. Understanding soluble arsenate removal kinetics by zerovalent iron media. Environ. Sci. Technol. , 36(9), 2074-2081. doi: 10.1021/es011250y
      Mohan, D., Pittman, C.U. Jr., 2007. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. , 142(1-2): 1-53. doi: 10.1016/j.jhazmat.2007.01.006
      Pokhrel, D., Viraraghavan, T., 2006. Arsenic removal from aqueous solutions by a modified fungal biomass. Water Res. , 40(3): 549-552. doi: 10.1016/j.watres.2005.11.040
      Pratap, C., Shigeru, K., Toshinori, K., et al., 2009. Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. , 162: 440-447. doi: 10.1016/j.jhazmat.2008.05.061
      Su, C.M., Puls, R.W., 2001. Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediantion. Environ. Sci. Technol. , 35(7): 1487-1492. doi: 10.1021/es001607i
      Sun, H., Wang, L., Zhang, R., et al., 2006. Treatment of groundwater polluted by arsenic compounds by zero valent iron. J. Hazard. Mater. , B129: 297-303. doi: 10.1016/j.jhazmat.2005.08.026
      Sylvester, P., Westerhoff, P., Moller, T., et al., 2007. A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environ. Eng. Sci. , 24(1): 104-112 doi: 10.1089/ees.2007.24.104
      U.S. EPA., 2001. National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring: final rule. Federal Register, 66(14): 69-76.
      Welch, A.H., Lico, M.S., Hughes, J.L., 1988. Arsenic in ground water of the western United States. Ground Water, 26(3): 333-347. doi: 10.1111/j.1745-6584
      Wilkie, J.A., Hering, J.G., 1998. Rapid oxidation of geothermal arsenic (III) in stream waters of the eastern Sierra Nevada. Environ. Sci. Technol. , 32(5): 657-662. doi: 10.1021/es970637r
      Zhang, W.X., Wang, C.B., Lien, H.L., 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40(4): 387-395. doi: 10.1016/S0920-5861(98)00067-4
      Zhu, H.J., Jia, Y.F., Wu, X., et al., 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. , 172: 1591-1596. doi: 10.1016/j.jhazmat.2009.08.031
      Zhu, H.J., Jia, Y.F., Yao, S.H., et al., 2009. Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron. Environmental Science, 30(12): 3562-3567 (in Chinese with English abstract). http://europepmc.org/abstract/MED/20187387
      黄园英, 刘丹丹, 刘菲, 2009a. 纳米铁用于饮用水中As(III)去除效果. 生态环境学报, 18(1): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200901019.htm
      黄园英, 秦臻, 刘菲, 2009b. 纳米铁去除饮用水中As(III)和As(V). 岩矿测试, 28(6): 529-534.
      朱慧杰, 贾永锋, 姚淑华, 等, 2009. 负载型纳米铁吸附剂去除饮用水中As(Ⅴ) 的研究. 环境科学, 30(12): 3562-3567. doi: 10.3321/j.issn:0250-3301.2009.12.019
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (3490) PDF downloads(69) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return