• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 2
    Mar.  2012
    Turn off MathJax
    Article Contents
    DING Hong-rui, LI Yan, LU An-huai, 2012. Electrochemical Study on Electron Transfer Process between Electricigens and Single Crystal Pyrite in a Dual-Chambered Equipment. Earth Science, 37(2): 313-318. doi: 10.3799/dqkx.2012.035
    Citation: DING Hong-rui, LI Yan, LU An-huai, 2012. Electrochemical Study on Electron Transfer Process between Electricigens and Single Crystal Pyrite in a Dual-Chambered Equipment. Earth Science, 37(2): 313-318. doi: 10.3799/dqkx.2012.035

    Electrochemical Study on Electron Transfer Process between Electricigens and Single Crystal Pyrite in a Dual-Chambered Equipment

    doi: 10.3799/dqkx.2012.035
    • Received Date: 2010-08-12
    • Publish Date: 2012-03-15
    • This research built up a dual-chambered electricigens-pyrite equipment. Using single crystal pyrite as electron acceptor of electricigens, and the electron transfer process was analyzed by electrochemical methods. Compared with graphite electrode, the maximum system power density increased by 132.9% and polarization resistance of EIS decreased by 98.8% with a single crystal pyrite electrode. The data show a favorable electron transfer activity between electricigens and single crystal pyrite. The electron transfer process is related to the two electrode reactions, of which one is microbial oxidation by electricigens, and the other is reduction at 0.34 V (vs. SCE) by single crystal pyrite as electron acceptor.

       

    • loading
    • Almeida, C.M.V.B., Giannetti, B.F., 2003. The electrochemical behavior of pyrite-pyrrhotite mixtures. Journal of Electroanalytical Chemistry, 553(30): 27-34. doi: 10.1016/S0022-0728(03)00254-7
      Childers, S.E., Ciufo, S., Lovley, D.R., 2002. Geobacter metallireducens accesses insoluble Fe (III) oxide by chemotaxis. Nature, 416(6882): 767-769. doi: 10.1038/416767a
      Dean, J.A., 1991. Lange's handbook of chemistry (13rd Edition). Translated by Shang, J.F., Cao, S.J., Xin, W.M., et al. . Science Press, Beijing (in Chinese).
      Dong, H., 2010. Mineral-microbe interactions: a review. Frontiers of Earth Science in China, 4(2): 127-147. doi: 10.1007/s11707-010-0022-8
      Evangelou, V.P.B., Zhang, Y.L., 1995. A review: pyrite oxidation mechanisms and acid mine drainage prevention. Critical Reviews in Environmental Science & Technology, 25(2): 141-199. doi: 10.1080/10643389509388477
      Giorgi, L., Antolini, E., Pozio, A., et al., 1998. Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochimica Acta, 43(24): 3675-3680. doi: 10.1016/S0013-4686(98)00125-X
      Kim, H.J., Park, H.S., Hyun, M.S., et al., 2002. A mediator less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme and Microbial Technology, 30(2): 145-152. doi: 10.1016/S0141-0229(01)00478-1
      Liu, H., Logan, B.E., 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14): 4040-4046. doi: 10.1021/es0499344
      Logan, B.E., Hamelers, B., Rozendal, R., et al., 2006. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17): 5181-5192. doi: 10.1021/es0605016
      Manohar, A.K., Bretschger, O., Nealson, K.H., et al., 2008. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry, 72(2): 149-154. doi: 10.1016/j.bioelechem.2008.01.004
      Marshall, C.W., May, H.D., 2009. Electrochemical evidence of direct electrode reduction by a thermophilic gram-positive bacterium, Thermincola ferriacetica. Energy & Environmental Science, 2(6): 699-705. doi: 10.1039/B823237G
      Myers, C.R., Nealson, K.H., 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240(4857): 1319-1321. doi: 10.1126/science.240.4857.1319
      Rabaey, K., Verstraete, W., 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23(6): 291-298. doi: 10.1016/j.tibtech.2005.04.008
      Roden, E.E., Urrutia, M.M., Mann, C.J., 2000. Bacterial reductive dissolution of crystalline Fe (III) oxide in continuous-flow column reactors. Applied and Environmental Microbiology, 66(3): 1062-1065. doi: 10.1128/AEM.66.3.1062-1065.2000
      Schaetzle, O., Barrière, F., Baronian, K., 2008. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy & Environmental Science, 1(6): 607-620. doi: 10.1039/B810642H
      Schippers, A., Jørgensen, B.B., 2002. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66(1): 85-92. doi: 10.1016/S0016-7037(01)00745-1
      Schröder, U., Nießen, J., Scholz, F., 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie, 115(25): 2986-2989. doi: 10.1002/ange.200350918
      Tao, D.P., Richardson, P.E., Luttrell, G.H., et al., 2003. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes. Electrochimica Acta, 48(24): 3615-3623. doi: 10.1016/S0013-4686(03)00482-1
      Zhao, F., Harnisch, F., Schröder, U., et al., 2006. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental Science & Technology, 40(17): 5193-5199. doi: 10.1021/es060332p
      Dean, J.A., 主编, 1991. 兰氏化学手册, 中文版(第十三版). 尚久方, 操时杰, 辛无名, 等译. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (3660) PDF downloads(108) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return