• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 2
    Mar.  2012
    Turn off MathJax
    Article Contents
    ZHANG Cui-yun, ZHANG Sheng, MA Lin-na, YIN Mi-ying, 2012. Nitrogen Isotope Tracing of Sources of Nitrate Contamination in Groundwater from Wastewater Irrigated Area. Earth Science, 37(2): 350-356. doi: 10.3799/dqkx.2012.041
    Citation: ZHANG Cui-yun, ZHANG Sheng, MA Lin-na, YIN Mi-ying, 2012. Nitrogen Isotope Tracing of Sources of Nitrate Contamination in Groundwater from Wastewater Irrigated Area. Earth Science, 37(2): 350-356. doi: 10.3799/dqkx.2012.041

    Nitrogen Isotope Tracing of Sources of Nitrate Contamination in Groundwater from Wastewater Irrigated Area

    doi: 10.3799/dqkx.2012.041
    • Received Date: 2011-09-12
    • Publish Date: 2012-03-15
    • In order to identify sources of nitrate in groundwater from the wastewater irrigated area, the southern part of Shijiazhuang City, 5 soil/wastewater samples from potential contamination sources and 19 groundwater samples were collected for chemical and nitrogen isotopic analyses. Irrigation wastewater has relatively low δ15N value of 4.0‰, and soil applied with commercial fertilizer and beneath animal waste piles has δ15N values of 1.4‰ and 12.4‰, respectively. The distribution of δ15N values of sediment from about 30 m-thick vadose zone beneath the vegetable growth plot only applied with animal wastes shows that NO3- derived from animal wastes has transported to the lower vadose zone with the mean δ15N value of 10.9‰. Sediment samples collected from the thick vadose zone beneath the farmland only irrigated with wastewater indicates that the deep vadose zone below the soil layer has narrow range of δ15N values with the mean δ15N value of 5.7‰. Groundwater from the wastewater irrigated area has NO3- concentration ranging from 52.6 mg/L to 124.5 mg/L with a mean value of 79.72 mg/L, and δ15N values of NO3- ranging from 5.3 to 8.3‰ with a mean value of 7.0‰ except a sample from a deep well. δ15N values of groundwater from the wastewater irrigated area are higher than those from the deep vadose zone beneath the wastewater irrigated area, which indicates that other sources with higher δ15N values contribute to groundwater NO3-. The other sources are mainly human and animal wastes. NO3- in groundwater from the wastewater irrigated area are derived from irrigation wastewater accounting for about 76% and from human and animal wastes accounting for about 24%, respectively. Wastewater irrigation and human/animal wastes management should be strengthened to prevent groundwater NO3- contamination in the wastewater irrigated area.

       

    • loading
    • Chen, J.Y., Tang, C.Y., Yu, J.J., 2006. Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. J. Hydrol., 326(1-4): 367-378. doi: 10.1016/j.jhydrol.2005.11.007
      Choi, W.J., Han, G.H., Lee, S.M., et al., 2007. Impact of land-use types on nitrate concentration and δ15N in unconfined groundwater in rural areas of Korea. Agric. Ecosyst. Environ., 120(2-4): 259-268. doi: 10.1016/j.agee.2006.10.002
      Delwiche, C.C., Steyn, P.L., 1970. Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Tech., 4(11): 929-935. doi: 10.1021/es60046a004
      Fogg, G.E., Rolston, D.E., Decker, D.L., et al., 1998. Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Ground Water, 36(3): 418-426. doi: 10.1111/j.1745-6584.1998.tb02812.x
      Fryar, A.E., Macko, S.A., Mullican, Ⅲ, W.F., et al., 2000. Nitrate reduction during ground-water recharge, southern High Plains, Texas. J. Contam. Hydrol., 40(4): 335-363. doi: 10.1016/S0169-7722(99)00059-5
      Heaton, T.H.E., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol., 59: 87-102. doi: 10.1016/0168-9622(86)90059-X
      Herbei, M.J., Spalding, R.F., 1993. Vadose zone fertilizer-derived nitrate and δ15N extracts. Ground Water, 31(3): 376-382. doi: 10.1111/j.1745-6584.1993.tb01838.x
      Jiang, C.L., Xia, Z.Q., Liu, L., 1997. Impacts of wastewater irrigation on environmental factors of soil and groundwater either side of Kui River. Journal of Hohai University (Natural Science), 25(5): 114-116 (in Chinese with English abstract).
      Kass, A., Gavrieli, I., Yechieli, Y., et al., 2005. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli coastal aquifer. Journal of Hydrology, 300: 314-331. doi: 10.1016/j.jhydrol.2004.06.013
      Koba, K., Tokuchi, N., Wada, E., et al., 1997. Intermittent denitrification: the application of a 15N natural abundance method to a forested ecosystem. Geochim. Cosmochim. Acta, 61(23): 5043-5050. doi: 10.1016/S0016-7037(97)00284-6
      Kreitler, C.W., Jones, D.C., 1975. Natural soil nitrate: the cause of the nitrate contamination of groundwater in Runnels County, Texas. Ground Water, 13(1): 53-61. doi: 10.1111/j.1745-6584.1975.tb03065.x
      Li, G.H., 1989. Research about "time effect" of sewage irrigation on groundwater pollution in Zhengzhou city. Journal of Changchun University of Earth Science, 19(4): 117-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ198904008.htm
      Mariotti, A., Germon, J.C., Hubert, P., et al., 1981. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil, 62(3): 413-430. doi: 10.1007/BF02374138
      Qishlaqi, A., Moore, F., Forghani, G., 2008. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environmental Monitoring and Assessment, 141: 257-273. doi:10.1007/ s10661-007-9893-x.
      Shao, Y.S., Ji, S., 1992. Using nitrogen isotope technique to study influence of irrigation with sewage on the pollution of groundwater. Geotechnical Investigation and Surveying, (4): 37-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC199204008.htm
      Sigman, D.M., Casciotti, K.L., Andreani, M., et al., 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem., 73(17): 4145-4153. doi: 10.1021/ac010088e
      Spalding, R.F., U, Z.K., Hyun, S.W., et al., 2001. Source identification of nitrate on Cheju Island, South Korea. Nutrient Cycling in Agroecosystems, 61: 237-246. doi: 10.1007/s10705-004-1476-4
      Tang, C.Y., Chen, J.Y., Song, X.F., et al., 2006. Effects of wastewater irrigation on groundwater quantity and quality in the suburbs of Shijiazhuang city, China. Resources Science, 28(1): 102-109 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZRZY200601017.htm
      Xue, D.M., Botte, J., De Baets, B., et al., 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res., 43(5): 1159-1170. doi: 10.1016/j.watres.2008.12.048
      Zeng, D.F., Zhu, W.B., 2004. Discussion on problems of sewage irrigation and countermeasures in China. Agricultural Research in the Arid Areas, 22(4): 221-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHDQ200404044.htm
      Zhang, C.Y., Zhang, J.X., Ma, L.N., et al., 2010. Nitrogen and oxygen isotopic analyses of nitrate in groundwater and sediments using the denitrifier method. In: Birkle, P., Torres-Alvarado, I.S., eds., Water-rock interaction, proceedings of the 13th international symposium on water-rock interaction, Guanajuato, Mexico, 16-20 August, 2010. Taylor & Francis, London, 319-322.
      Zhang, L., Altabet, M.A., Wu, T.X., et al., 2007. Sensitive measurement of NH4+15N/14N (δ15NH4+) at natural abundance levels in fresh and saltwaters. Analytical Chemsitry, 79(14): 5297-5303. doi: 10.1021/ac070106d
      姜翠玲, 夏自强, 刘凌, 1997. 污灌对奎河两岸土壤和地下水环境要素的影响. 河海大学学报(自然科学版), 25(5): 114-116. doi: 10.3321/j.issn:1000-1980.1997.05.021
      李广贺, 1989. 郑州市污水灌溉对地下水污染的"时间效应" 研究. 长春地质学院学报, 19(4): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198904008.htm
      邵益生, 纪衫, 1992. 应用氮同位素方法研究污灌对地下水氮污染的影响. 工程勘察, (4): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199204008.htm
      唐常源, 陈建耀, 宋献方, 等, 2006. 农业污水灌溉对石家庄市近郊灌农业区地下水环境的影响. 资源科学, 28(1): 102-109. doi: 10.3321/j.issn:1007-7588.2006.01.017
      曾德付, 朱维斌, 2004. 我国污水灌溉存在问题和对策探讨. 干旱地区农业研究, 22(4): 221-224. doi: 10.3321/j.issn:1000-7601.2004.04.044
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(2)

      Article views (3744) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return