Citation: | HONG Han-lie, DU Deng-wen, LI Rong-biao, Jock G. Churchman, YIN Ke, WANG Chao-wen, 2012. Mixed-Layer Clay Minerals in the Xuancheng Red Clay Sediments, Xuancheng, Anhui Province. Earth Science, 37(3): 424-432. doi: 10.3799/dqkx.2012.050 |
Brinkman, R., Ferrolysis, 1970. A hydromorphic soil forming process. Geoderma, 3(3): 199-206. doi: 10.1016/0016-7061(70)90019-4
|
Bronger, A., Winter, R., Sedov, S., 1998. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: towards a Quaternary paleoclimatic record in Central Asia. Catena, 34(1-2): 19-34. doi: 10.1016/S0341-8162(98)00079-4
|
Catt, J.A., 1991. Soils as indicators of quaternary climatic change in mid-latitude regions. Geoderma, 51(1-4): 167-187. doi: 10.1016/0016-7061(91)90070-A
|
Churchman, G.J., Slade, P.G., Self, P.G., et al., 1994. Nature of interstratified kaolin-smectites in some Australian soils. Australian Journal of Soil Research, 32(4): 805-822. doi: 10.1071/SR9940805
|
Churchman, G.J., Theng, B.K.G., 1984. Interactions of halloysites with amides: mineralogical factors affecting complex formation. Clay Minerals, 19(2): 161-175. doi: 10.1180/claymin.1984.019.2.04
|
Costantini, E.A.C., Makeev, A., Sauer, D., 2009. Recent developments and new frontiers in paleopedology. Quaternary International, 209(1-2): 1-5. doi: 10.1016/j.quaint.2009.08.005
|
Deepthy, R., Balakrishnan, S., 2005. Climatic control on clay mineral formation: evidence from weathering profiles developed on either side of the western Ghats. Journal of Earth System Science, 114(5): 545-556. doi: 10.1007/BF02702030
|
Delvaux, B., Herbillon, A., 1995. Pathways of mixed layer kaolin-smectite formation in soils. In: Clays controlling the environment, Proceedings of the 10th International Clay Conference, Adelaide, Australia, 457-461.
|
Dudek, T., Cuadros, J., Huertas, J., 2007. Structure of mixed-layer kaolinite-smectite and smectite-to-kaolinite transformation mechanism from synthesis experiments. American Mineralogist, 92(1): 179-192. doi: 10.2138/am.2007.2218
|
Foscolos, A.E., Rutter, N.W., Hughes, O.L., 1977. The use of pedological studies in interpreting the Quaternary history of central Yukon Territory. Energy, Mines, and Resources, Canada, Ottwa, Canada, QE185. A43(271): 48.
|
Hong, H.L., Gu, Y.S., Li, R.B., et al., 2010a. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China. Journal of Quaternary Science, 25(5): 662-674. doi: 10.1002/jqs.1340
|
Hong, H.L., Gu, Y.S., Yin, K., et al., 2010b. Red soils with white net-like veins and climate significance in South China. Geoderma, 160(2): 197-207. doi: 10.1016/j.geoderma.2010.09.019
|
Hong, H.L., 2010. A review on paleoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1-8 (in Chinese with English abstract).
|
Hu, X.F., Cheng, T.F., Wu, H.X., 2003. Do multiple cycles of Aeolian deposit-pedogenesis exist in the reticulate red clay sections in southern China? Chinese Science Bulletin, 48(12): 1251-1258. doi: 10.1007/BF03183947
|
Jackson, M.L., 1985. Soil chemical analysis: advanced course, 2nd edition. University of Wisconsin-Madison Libraries, Madison, Wisconsin.
|
Jaynes, W.F., Bigham, J.M., Smeck, N.E., et al., 1989. Interstratified 1∶1-2∶1 mineral formation in a polygenetic soil from southern Ohio. Soil Science Society of America Journal, 53(6): 1888-1894. doi: 10.2136/sssaj1989.03615995005300060046x
|
Li, Q.K., 1983. Red earth in China. Science Press, Beijing (in Chinese).
|
Liang, B., Xie, S.C., Gu, Y.S., et al., 2005. Distribution of n-alkanes as indicative of paleovegetation change in Pleistocene red earth in Xuancheng, Anhui. Earth Science—Journal of China University of Geosciences, 30(2): 129-132 (in Chinese with English abstract).
|
Norrish, K., Pickering, J.G., 1983. Clay minerals, soil: an Australian Viewpoint. CSIRO, Melbourne and Academic Press, London, 281-308.
|
Pal, D.K., Deshpande, S.B., Venugopal, K.R., et al., 1989. Formation of di- and trioctahedral smectite as evidence for paleoclimatic changes in southern and central Peninsular India. Geoderma, 45(2): 175-184. doi: 10.1016/0016-7061(89)90049-9
|
Pavlidis, Y.A., Shcherbakov, F.A., Shevchenko, A.Y., 1995. Clay-minerals in bottom sediments of White Sea and Cuba shelves—Comparison of geology and climate. Oceanology, 35(1): 121-127.
|
Robert, C., Kennett, J.P., 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay mineral evidence. Geology, 22(3): 211-214. doi: 10.1130/0091-7613(1994)022<0211:ASHEAT>2.3.CO;2
|
Ryan, P.C., Huertas, F.J., 2009. The temporal evolution of pedogenic Fe-smectite to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil chronosequence. Geoderma, 151(1-2): 1-15. doi: 10.1016/j.geoderma.2009.03.010
|
Schultz, L.G., Shepard, A.O., Blackmon, P.D., et al., 1971. Mixed-layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico. Clays and Clay Minerals, 19: 137-150. doi: 10.1346/CCMN.1971.0190302
|
Sheldon, N.D., Tabor, N.J., 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95(1-2): 1-52. doi: 10.1016/j.earscirev.2009.03.004
|
Singer, A., 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15(4): 303-326. doi: 10.1016/0012-8252(80)90113-0
|
Singer, A., 1993. Weathering patterns in representative soils of Guangxi Province, South-East China, as indicated by detailed clay mineralogy. Journal of Soil Science, 44(1): 173-188. doi: 10.1111/j.1365-2389.1993.tb00443.x
|
Srivastaval, P., Parkash, B., Pal, D.K., 1998. Clay minerals in soils as evidence of Holocene climatic change, Central Indo-Gangetic Plains, North-Central India. Quaternary Research, 50: 230-239. doi: 10.1006/qres.1998.1994
|
rodoń, J., 1999. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annual Review of Earth and Planetary Sciences, 27: 19-53. doi: 10.1146/annurev.earth.27.1.19
|
Vicente, M.A., Elsass, F., Molina, E., et al., 1997. Palaeoweathering in slates from the Iberian Hercynian Massif (Spain): investigation by TEM of clay mineral signatures. Clay Minerals, 32(3): 435-451. doi: 10.1180/claymin.1997.032.3.06
|
Vingiani, S., Righi, D., Petit, S., et al., 2004. Mixed-layer kaolinite-smectite minerals in a red-black soil sequence from basalt in Sardinia (Italy). Clays and Clay Minerals, 52(4): 473-483. doi: 10.1346/CCMN.2004.0520408
|
Vogt, T., Clauer, N., Larqué, P., 2010. Impact of climate and related weathering processes on the authigenesis of clay minerals: examples from circum-Baikal region, Siberia. Catena, 80(1): 53-64. doi: 10.1016/j.catena.2009.08.008
|
Wilson, M.J., 1999. The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34(1): 7-25. doi: 10.1180/000985599545957
|
Xi, C.F., 1990. Soil condition recording the long term climate change. Quaternary Sciences, 1: 82-89 (in Chinese with English abstract). http://www.researchgate.net/publication/285750927_Soil_condition_recording_the_long_term_climatic_change
|
Xiong, S.F., Sun, D.H., Ding, Z.L., 2002. Aeolian origin of the red earth in Southeast China. Journal of Quaternary Science, 17(2): 181-191. doi: 10.1002/jqs.663
|
Yin, Q.Z., Guo, Z.T., 2006. The vermiculated red soil in southern China and its implications for the strength extreme of East Asian. Chinese Science Bulletin, 51(2): 186-193 (in Chinese). doi: 10.1360/972005-490
|
Zhao, Q.G., Yang, H., 1995. A preliminary study on red earth and changes of Quarternary environment in South China. Quarternary Sciences, 2: 107-116 (in Chinese with English abstract).
|
Zhu, J.J., 1988. Genesis and research significance of the plinthitic horizon. Geographical Research, 7(4): 12-20 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DLYJ198804001.htm
|
Zhu, L.D., Zhou, S.Z., Li, F.Q., et al., 2007. Geochemistry behavior of major elements of Pleistocene red earth in South China. Geochimica, 36(3): 295-302 (in Chinese with English abstract).
|
Zhu, L.J., 1996. Environmental significance of 1.4 nm interstratified mineral from the laterite developed on the carbonate rock in Guizhou Province. Bulletin of Mineralogy, Petrology and Geochemistry, 15(3): 167-170 (in Chinese with English abstract).
|
Zhu, Z.Y., Wang, J.D., Huang, B.L., et al., 1995. Red soil, loess and global change. Quarternary Sciences, 3: 267-277 (in Chinese with English abstract).
|
洪汉烈, 2010. 黏土矿物古气候意义研究的现状与展望. 地质科技情报, 29(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201001000.htm
|
李庆奎, 1983. 中国红壤. 北京: 科学出版社.
|
梁斌, 谢树成, 顾延生, 等, 2005. 安徽宣城更新世红土正构烷烃分布特征及其古植被意义. 地球科学, 30(2): 129-132. http://www.earth-science.net/article/id/1428
|
席承藩, 1990. 土壤是气候变化的长期记录者. 第四纪研究, 1: 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199001009.htm
|
尹秋珍, 郭正堂, 2006. 中国南方的网纹红土与东亚季风的异常强盛期. 科学通报, 51(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200602012.htm
|
赵其国, 杨浩, 1995. 中国南方红土与第四纪环境变迁的初步研究. 第四纪研究, 2: 107-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ502.001.htm
|
朱景郊, 1988. 网纹红土的成因及其研究意义. 地理研究, 7(4): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ198804001.htm
|
朱丽东, 周尚哲, 李凤全, 等, 2007. 南方更新世红土氧化物地球化学特征. 地球化学, 36(3): 295-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200703009.htm
|
朱立军, 1996. 碳酸盐岩红土中1.4 nm间层矿物及其环境意义. 矿物岩石地球化学通报, 15(3): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH603.006.htm
|
朱照宇, 王俊达, 黄宝林, 等, 1995. 红土·黄土·全球变化. 第四纪研究, 3: 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ503.008.htm
|