Citation: | ZHANG Yan-fei, WU Yao, LIU Peng-lei, WANG Yan-bin, WANG Chao, JIN Zhen-min, 2012. Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences. Earth Science, 37(5): 955-965. doi: 10.3799/dqkx.2012.104 |
Ai, Y.S., Zheng, T.Y., Xu, W.W., et al., 2003. A complex 660 km discontinuity beneath Northeast China. Earth and Planetary Science Letters, 212: 63-71. doi: 10.1016/S0012-821X(03)00266-8
|
Aubaud, C., Hauri, E.H., Hirschmann, M.M., 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophysical Research Letters, 31, L20611. doi: 10.1029/2004GL021341
|
Bean, V.E., Akimoto, S., Bell, P.M., et al., 1986. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Physica B&C, 139-140: 52-54. doi: 10.1016/0378-4363(86)90521-8
|
Birch, F., 1952. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57(2): 227-286. doi: 10.1029/JZ057i002p00227
|
Block, S., 1978. Round-robin study of the high pressure phase transition in ZnS. Acta Crystallographica, A34(Suppl. ): 316.
|
Bose, K., Ganguly, J., 1995. Quartz-coesite transition revisited; reversed experimental determination at 500-1 200 degrees C and retrieved thermochemical properties. American Mineralogist, 80(3-4): 231-238. doi: 10.2138/am-1995-3-404
|
Dasgupta, R., Hirschmann, M.M., 2006. Melting in the earth's deep upper mantle caused by carbon dioxide. Nature, 440: 659-662. doi: 10.1038/nature04612
|
Deuss, A., Woodhouse, J., 2001. Seismic observations of splitting of the mid-transition zone discontinuity in earth's mantle. Science, 294(5541): 354-357. doi: 10.1126/science.1063524
|
Evans, R.L., Tarits, P., Chave, A.D., et al., 1999. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science, 286: 752-756. doi: 10.1126/science.286.5440.752
|
Fei, Y.W., 2002. Phase transition in the earth's mantle and mantle mineralogy. In: Zhang, Y.X., Yin, A., eds., Structure, evolution and dynamics and the earth. High Education Press, Beijing, 49-90 (in Chinese).
|
Fei, Y., Bertka, C.M., 1999. Phase transitions in the Earth's mantle and mantle mineralogy. In: Fei, Y., Bertka, C.M., Mysen, B.O., eds., Mantle petrology: field observations and high pressure experimentation. Mysen, Spec. Publ., 6: 189-207.
|
Fei, Y., Van Orman, J., Li, J., et al., 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 109, B02305, doi: 10.1029/2003JB002562
|
Frost, D.J., Poe, B.T., Trønnes, R.G., et al., 2004. A new large-volume multianvil system. Physics of the Earth and Planetary Interiors, 143-144: 507-514. doi: 10.1016/j.pepi.2004.03.003
|
Gasparik, T., 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology, 102(4): 389-405. doi: 10.1007/BF00371083
|
Gasparik, T., 1990. Phase relations in the transition zone. Journal of Geophysical Research, 15(B10): 15751-15769. doi: 10.1029/JB095iB10p15751
|
Getting, I.C., 1998. New determination of the bismuth Ⅰ-Ⅱ equilibrium pressure: a proposed modification to the practical pressure scale. Metrologia, 35: 119-132. doi: 10.1088/0026-1394/35/2/7
|
Gu, Y.J., Lerner-Lam, A.L., Dziewonski, A.M., et al., 2005. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth and Planetary Science Letters, 232(3-4): 259-272. doi: 10.1016/j.epsl.2005.01.019
|
Irifune, T., Higo, Y., Inoue, T., et al., 2008. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451: 814-817. doi: 10.1038/nature06551
|
Irifune, T., Ringwood, A.E., 1993. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary Science Letters, 117(1-2): 101-110. doi: 10.1016/0012-821X(93)90120-X
|
Irifune, T., Ringwood, A.E., Hibberson, W.O., 1994. Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 126(4): 351-368. doi: 10.1016/0012-821X(94)90117-1
|
Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986. The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth and Planetary Science Letters, 77(2): 245-256. doi: 10.1016/0012-821X(86)90165-2
|
Ito, E., 2007. Theory and practice-multianvil cells and high-pressure experimental methods. Treatise on Geophysics, 2: 197-229. doi: 10.1016/B978-044452748-6/00036-5
|
Ito, E., Takahashi, E., 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8): 10637-10646. doi: 10.1029/JB094iB08p10637
|
Jin, Z.M., 1997. The progress and perspectives of high-T and high-P experimental study in China. Chinese Journal of Geophysics, 40(Suppl. I): 70-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX1997S1008.htm
|
Katsura, T., Ito, E., 1989. The system Mg2SiO4-Fe2SiO4 at high pressure and temperatures: precise determination of stability of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94(B11): 15663-15670. doi: 10.1029/JB094iB11p15663
|
Katsura, T., Yamada, H., Nishikawa, O., et al., 2004. Olivine-wadsleyite transformation in the system (Mg, Fe)2SiO4. Journal of Geophysical Research, 109(B02209). doi: 10.1029/2003JB002438
|
Kawai, N., Endo, S., 1970. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Review of Scientific Instruments, 41: 1178-1181. doi: 10.1063/1.1684753
|
Kawai, N., Togaya, M., Onodera, A., 1973. A new device for pressure-vessels. Proceedings of the Japan Academy, 8: 623-626. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Proceedings%20of%20the%20Japan%20Academy&atitle=A%20New%20Device%20for%20Pressure%20Vessels
|
Kind, R., Li, X., 2007. Deep earth structure-transition zone and mantle discontinuities. Treatise on Geophysics, 1: 591-618. doi: 10.1016/B978-044452748-6/00020-1
|
Liu, L., Zhang, J.F., Green, H.W., et al., 2007. Evidence of former stishovite in metamorphosed sediments: implying subduction to >350 km. Earth and Planetary Science Letters, 263(3-4): 180-191. doi: 10.1016/j.epsl.2007.08.010
|
Lloyd, E.C., 1971. Accurate characterization of the high-pressure environment. NBS Spec. Publ. , 326: 1-3. http://www.researchgate.net/publication/236365649_Accurate_Characterization_of_the_High-Pressure_Environment
|
McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3-4): 337-349. doi: 10.1016/j.epsl.2005.02.005
|
Morishima, H., Kato, T., Suto, M., et al., 1994. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science, 265(5176): 1202-1203. doi: 10.1126/science.265.5176.1202
|
Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87(4): 454-461. doi: 10.2138/am-2002-0409
|
Ohtani, E., Irifune, T., Hibberson, W.O., et al., 1987. Modified split-sphere guide block for practical operation of a multiple-anvil apparatus. High Temperatures-High Pressures, 19: 523-529. http://www.researchgate.net/publication/279621765_MODIFIED_SPLIT-SPHERE_GUIDE_BLOCK_FOR_PRACTICAL_OPERATION_OF_A_MULTIPLE-ANVIL_APPARATUS
|
Ono, S., Ohishi, Y., Isshiki, M., Watanuki, T., 2005. In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. Journal of Geophysical Research, 110, B02208. doi: 10.1029/2004JB003196
|
Piermarini, G.J., Block, S., 1975. Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale. Reviews of Scientific Instruments, 46: 973-980. doi: 10.1063/1.1134381
|
Saikia, A., Frost, D.J., Rubie, D.C., 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319(5869): 1515-1518. doi: 10.1126/science.1152818
|
Sawamoto, H., 1987. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2 200 ℃: phase stability and properies of tetragonal garnet. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 209-219. doi: 10.1029/GM039p0209
|
Shearer, P.M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520 km discontinuity. Nature, 344: 121-126. doi: 10.1038/344121a0
|
Shearer, P.M., 2000. Upper mantle seismic discontinuities. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph). American Geophysical Union, Washington DC, 115-128.
|
Sleep, N.H., Zahnle, K., 2001. Carbon dioxide cycling and implications for climate on ancient earth. Journal of Geophysical Research, 106(E1): 1373-1399. doi: 10.1029/2000JE001247
|
Susaki, J., Akaogi, M., Akimoto, S., et al., 1985. Garnet-perovskite transformation in CaGeO3: in situ X-ray measurements using synchrotron radiation. Geophysical Research Letters, 12(10): 729- 732. doi: 10.1029/GL012i010p00729
|
Suzuki, A., Ohtani, E., Morishima, H., 2000. In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophysical Research Letters, 27(6): 803-805. doi: 10.1029/1999GL008425
|
Suzuki, T., Yagi, T., Akimoto, S., 1981. Precise determination of transition pressure of GaAs. Abstr. 22nd High Pressure, Conf. Japan, 8-9.
|
Takahashi, E., 1986. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91(B9): 9367-9382. doi: 10.1029/JB091iB09p09367
|
Takahashi, E., Ito, E., 1987. Mineralogy of mantle peridotite along a model geotherm up to 700 km depth. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics: a volume in honor of Syun-iti Akimoto (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 427-437. doi: 10.1029/GM039p0427
|
Walker, D., Carpenter, M.A., Hitch, C.M., 1990. Some simplifications to multianvil devices for high pressure experiments. American Mineralogist, 75(9-10): 1020-1028. http://www.researchgate.net/publication/279903818_Some_Simplifications_to_Multianvil_Devices_for_High_Pressures_Experiments
|
Wang, Y.B., 2006. Combining the large-volume press with synchrotron radiation: applications to in-situ studies of earth materials: under high pressure and temperature. Earth Science Frontiers, 13(2): 1-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602001.htm
|
Weidner, D.J., Wang, Y., 2000. Phase transformations: implications for mantle structure. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 117: 215-235. doi: 10.1029/GM117p0215
|
Wu, Y., Fei, Y.W., Jin, Z.M., et al., 2009. The fate of subducted upper continental crust: an experimental study. Earth and Planetary Science Letters, 282(1-4): 275-284. doi: 10.1016/j.epsl.2009.03.028
|
Wu, Y., Wang, Y.B., Zhang, Y.F., et al., 2012, An experimental study of phase transformations in olivine under pressure and temperature conditions corresponding to the mantle transition zone. Chinese Science Bulletin, 57(8): 894-901. doi: 10.1007/s11434-011-4884-2
|
Yagi, T., Akaogi, M., Shimomura, O., et al., 1987. In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. Journal of Geophysical Research, 92(B7): 6207-6213. doi: 10.1029/JB092iB07p06207
|
Yasuda, A., Fujii, T., Kurita, K., 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. Journal of Geophysical Research, 99(B5): 9401-9414. doi: 10.1029/93JB03205
|
Ye, K., Cong, B.L., Ye, D.N., 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566
|
Yoneda, A., Endo, S., 1980. Phase transition in barium and bismuth under high pressure. Journal of Applied Physics, 51(6): 3216-3221. doi: 10.1063/1.328076
|
Zhang, J.Z., Li, B.S., Utsumi, W., et al., 1996. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23(1): 1-10. doi: 10.1007/BF00202987
|
Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005. Relict coesite exsolution in omphacite from western Tianshan eclogites, China. American Mineralogist, 90(1): 181-186. doi: 10.2138/am.2005.1587
|
Zhou, C.Y., Jin, Z.M., Zhang, J.F., 2010. Mantle transition zone: an important field in the studies of earth's deep interior. Earth Science Frontiers, 17(3): 90-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201003010.htm
|
费英伟, 2002. 地幔中的相变和地幔矿物学. 见: 张有学, 尹安, 主编. 地球的结构、演化和动力学. 北京: 高等教育出版社, 49-90.
|
金振民, 1997. 我国高温高压实验研究和展望. 地球物理学报, 40 (增刊I): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1997S1008.htm
|
王雁宾, 2006. 地球内部物质性质的原位高温高压研究: 大体积压机与同步辐射源的结合. 地学前缘, 13(2): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602001.htm
|
周春银, 金振民, 章军锋, 2010. 地幔转换带: 地球深部研究的重要方向. 地学前缘, 17(3): 90-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm
|