• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 5
    Sep.  2012
    Turn off MathJax
    Article Contents
    JI Li-ming, QIU Jun-li, ZHANG Tong-wei, XIA Yan-qing, 2012. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 37(5): 1043-1050. doi: 10.3799/dqkx.2012.111
    Citation: JI Li-ming, QIU Jun-li, ZHANG Tong-wei, XIA Yan-qing, 2012. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 37(5): 1043-1050. doi: 10.3799/dqkx.2012.111

    Experiments on Methane Adsorption of Common Clay Minerals in Shale

    doi: 10.3799/dqkx.2012.111
    • Received Date: 2011-12-17
      Available Online: 2021-11-10
    • Publish Date: 2012-09-15
    • In order to reveal the main control factors of natural gas adsorption capacity of clay minerals, the methane adsorption isotherm experiments of common clay minerals selected from different sources were performed. The analysis shows that differences of gas adsorption capacity are significant among different types of clay minerals, and the order of methane adsorption capacity of various clay minerals is smectite >> illite and smectite mixed-layers > kaolinite > chlorite > illite > siltstone > quartzite. The crystal structure of clay mineral determines the shape and size of pore spaces between polymer particles and interlayer spaces between crystal layers, and accordingly determines its surface area and gas adsorption capability. Methane adsorption capacities of clay minerals are highly consistent to the development degrees of micro-pores supplied by scanning electron microscopy. The study indicates that the gas adsorption capacity of clay minerals not only depends on the type of clay mineral, but also is significantly influenced by diagenesis and petrogenesis. In addition, the gas adsorption capacity of clay minerals slightly increases with the decrease of particle size due to the enlargement of pore connectivity and surface area.

       

    • loading
    • Aringhieri, R., 2004. Nanoporosity characteristics of some natural clay minerals and soils. Clays and Clay Minerals, 52(6): 700-704. doi: 10.1346/CCMN.2004.0520604
      Aylmore, L.A.G., Quirk, J.P., 1967. Micropore size distributions of clay mineral systems. Journal of Soil Science, 18(1): 1-17. doi: 10.1111/j.1365-2389.1967.tb01481.x
      Birkeland, P.W., 1969. Quaternary paleoclimatic implications of soil clay mineral distribution in a Sierra Nevada-Great basin transect. Journal of Geology, 77(3): 289-302. doi: 10.1086/627436
      Chalmers, G.R.L., Bustin, R.M., 2007. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1-3): 223-239. doi: 10.1016/j.coal.2006.05.001
      Chalmers, G.R.L., Bustin, R.M., 2008. Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅰ: geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(1): 1-21. doi: 10.2113/gscpgbull.56.1.1
      Cheng, A.L., Huang, W.L., 2004. Selective adsorption of hydrocarbon gases on clays and organic matter. Organic Geochemistry, 35(4): 413-423. doi: 10.1016/j.orggeochem.2004.01.007
      Curtis, J.B., 2002. Fractured shale-gas systems. AAPG Bulletin, 86(11): 1921-1938. doi: 10.1306/61EEDDBE-173E-11D7-8645000102C1865D
      Gregg, S.J., Sing, K.S.W., 1982. Adsorption surface area and porosity (2nd ed). Academic Press, London and New York.
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068
      Keller, J.U., Staudt, R., 2005. Gas adsorption equilibria: experimental methods and adsorptive isotherms. Springer, Berlin.
      Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005. Mississippian Barnett shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential. AAPG Bulletin, 89 (2): 155-175. doi: 10.1306/09170404042
      Nuttall, B.C., Drahovzal, J.A., Eble, C.F., et al., 2003. Analysis of the Devonian black shale in Kentucky for potential CO2 sequestration and enhanced natural gas production. 2003 Seattle Annual Meeting, Kentucky Geological Survey, Lexington.
      Oades, J.M., 1986. Associations of colloidal materials in soils. Transactions of the XIII Congress of the International Soil Science Society (Hamburg), 6: 660-674.
      Palomino, A.M., Santamarina, J.C., 2005. Fabric map for kaolinite: Effects of pH and ionic concentration on behavior. Clays and Clay Minerals, 53(3): 211-223. doi: 10.1346/CCMN.2005.0530302
      Passey, Q.R., Bohacs, K.M., Esch, W.L., et al., 2010. From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of uniconventional shale-gas reservoirs. SPE, 131350: 1-27. doi: 10.2118/131350-MS
      Ross, D.J.K., 2007. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1): 51-75. doi: 10.2113/gscpgbull.55.1.51
      Ross, D.J.K., Bustin, R.M., 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
      Spostto, G., Skipper, T., Sutton, R., et al., 1999. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci, 96(7): 3358-3364. doi: 10.1073/pnas.96.7.3358
      Tsipursky, S.I., Drits, V.A., 1984. The distribution of octahedral cations in the 2∶1 layers of dioctahedral smectites studied boblique-texture electron-diffraction. Clay Minerals, 19(2): 177-193. doi: 10.1180/claymin.1984.019.2.05
      Turekian, K.K., 1968. Oceans. Prentice-Hall Press, New Jersey.
      Wang, C.C., Juang, L.C., Lee, C.K., et al., 2004. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280(1): 27-35. doi: 10.1016/j.jcis.2004.07.009
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (1193) PDF downloads(40) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return