Citation: | JI Li-ming, QIU Jun-li, ZHANG Tong-wei, XIA Yan-qing, 2012. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 37(5): 1043-1050. doi: 10.3799/dqkx.2012.111 |
Aringhieri, R., 2004. Nanoporosity characteristics of some natural clay minerals and soils. Clays and Clay Minerals, 52(6): 700-704. doi: 10.1346/CCMN.2004.0520604
|
Aylmore, L.A.G., Quirk, J.P., 1967. Micropore size distributions of clay mineral systems. Journal of Soil Science, 18(1): 1-17. doi: 10.1111/j.1365-2389.1967.tb01481.x
|
Birkeland, P.W., 1969. Quaternary paleoclimatic implications of soil clay mineral distribution in a Sierra Nevada-Great basin transect. Journal of Geology, 77(3): 289-302. doi: 10.1086/627436
|
Chalmers, G.R.L., Bustin, R.M., 2007. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1-3): 223-239. doi: 10.1016/j.coal.2006.05.001
|
Chalmers, G.R.L., Bustin, R.M., 2008. Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅰ: geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(1): 1-21. doi: 10.2113/gscpgbull.56.1.1
|
Cheng, A.L., Huang, W.L., 2004. Selective adsorption of hydrocarbon gases on clays and organic matter. Organic Geochemistry, 35(4): 413-423. doi: 10.1016/j.orggeochem.2004.01.007
|
Curtis, J.B., 2002. Fractured shale-gas systems. AAPG Bulletin, 86(11): 1921-1938. doi: 10.1306/61EEDDBE-173E-11D7-8645000102C1865D
|
Gregg, S.J., Sing, K.S.W., 1982. Adsorption surface area and porosity (2nd ed). Academic Press, London and New York.
|
Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068
|
Keller, J.U., Staudt, R., 2005. Gas adsorption equilibria: experimental methods and adsorptive isotherms. Springer, Berlin.
|
Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005. Mississippian Barnett shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential. AAPG Bulletin, 89 (2): 155-175. doi: 10.1306/09170404042
|
Nuttall, B.C., Drahovzal, J.A., Eble, C.F., et al., 2003. Analysis of the Devonian black shale in Kentucky for potential CO2 sequestration and enhanced natural gas production. 2003 Seattle Annual Meeting, Kentucky Geological Survey, Lexington.
|
Oades, J.M., 1986. Associations of colloidal materials in soils. Transactions of the XIII Congress of the International Soil Science Society (Hamburg), 6: 660-674.
|
Palomino, A.M., Santamarina, J.C., 2005. Fabric map for kaolinite: Effects of pH and ionic concentration on behavior. Clays and Clay Minerals, 53(3): 211-223. doi: 10.1346/CCMN.2005.0530302
|
Passey, Q.R., Bohacs, K.M., Esch, W.L., et al., 2010. From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of uniconventional shale-gas reservoirs. SPE, 131350: 1-27. doi: 10.2118/131350-MS
|
Ross, D.J.K., 2007. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1): 51-75. doi: 10.2113/gscpgbull.55.1.51
|
Ross, D.J.K., Bustin, R.M., 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
|
Spostto, G., Skipper, T., Sutton, R., et al., 1999. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci, 96(7): 3358-3364. doi: 10.1073/pnas.96.7.3358
|
Tsipursky, S.I., Drits, V.A., 1984. The distribution of octahedral cations in the 2∶1 layers of dioctahedral smectites studied boblique-texture electron-diffraction. Clay Minerals, 19(2): 177-193. doi: 10.1180/claymin.1984.019.2.05
|
Turekian, K.K., 1968. Oceans. Prentice-Hall Press, New Jersey.
|
Wang, C.C., Juang, L.C., Lee, C.K., et al., 2004. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280(1): 27-35. doi: 10.1016/j.jcis.2004.07.009
|