• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 5
    Sep.  2012
    Turn off MathJax
    Article Contents
    YIN Kun-long, LIU Yi-liang, WANG Yang, JIANG Zhi-bing, 2012. Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir. Earth Science, 37(5): 1067-1074. doi: 10.3799/dqkx.2012.113
    Citation: YIN Kun-long, LIU Yi-liang, WANG Yang, JIANG Zhi-bing, 2012. Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir. Earth Science, 37(5): 1067-1074. doi: 10.3799/dqkx.2012.113

    Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir

    doi: 10.3799/dqkx.2012.113
    • Received Date: 2011-11-08
      Available Online: 2021-11-10
    • Publish Date: 2012-09-15
    • The impoundments of Three Gorge Reservoir have obviously intensified the reservoir bank landslide deformation since 2003. Landslide deformation can cause not only damages, but also evokes great surge once high-speed landslide sliding into reservoir, which is a potential hazard far worse than landslide itself. Owing to the reservoir impoundment, Qianjiangping landslide in Three Gorges Reservoir Area (TGRA) occurred on July 13, 2003. The highest height of landslide-induced surge reached 39 meters which resulted in wave spreading more than 30 kilometers far away along the channel, causing casualties and property losses. In order to study the characteristics and propagation law of landslide-induced surge, based on the major scientific project in TGRA, this paper presenta comprehensive researches on landslide surge hazard in TGRA through large laboratory physical model experiments. Through the statistical analysis of geological data about the potential landslides in TGRA, adopting the orthogonal experimental design method, we formulated the experiment scheme which included landslide scale, speed entering into the water, sliding plane obliquity, water depth, and slope angle. Besides, we took the channel of Baishuihe landslide in TGRA as prototype, established the river physical model in map scale 1∶200, and thus developed landslide surge three-dimensional physical model experiment by adopting the experimental control system and measurement system. According to the careful physical model experiments, we obtained reliable experimental data of landslide surge. Based on the morphological changes of landslide surge, we confirmed the concept of head wave. Then based on the classical landslide surge formulas proposed by Noda and Pan Jiazheng, by analyzing the measured data, we deduced the landslide surge calculation formulas in TGRA. At last, taking Baishuihe landslide being in deformation as an example, these formulas were used to forecast the maximum head wave height and the decay law of landslide surge along the channel.

       

    • loading
    • Ataie-Ashtiani, B., Nik-Khah, A., 2008. Impulsive waves caused by subaerial landslides. Environmental Fluid Mechanics, 8(3): 263-280. doi: 10.1007/s10652-008-9074-7
      Fritz, H.M., Hager, W.H., Minor, H.E., 2004. Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coast, and Ocean Engineering, 130(6): 287-302. doi: 10.1061/(ASCE)0733-950X(2004)130:6(287)
      Huang, Z.W., Dong, X.L., 1983. Experimental study of water waves generated by landslide in the reservoir. The collected works of the institute of water resources and hydropower research (Vol. 13: hydraulics). Water Resources and Hydropower Press, Beijing, 157-170 (in Chinese).
      Kamphuis, J.W., Bowering, R.J., 1971. Impulse waves generated by landslides. ASCE, Proceedings of the 12th Coastal Engineering Conference, 1: 575-588.
      Noda, E., 1970. Water waves generated by landslides. Journal of the Waterways, Harbors and Coastal Engineering Division, 96(4): 835-855. doi: 10.1061/AWHCAR.0000045
      Pan, J.Z., 1980. Sliding stability of construction and landslide analysis. Water Conservancy Press, Beijing (in Chinese).
      Pang, C.J., 1985. Experiment research of two dimensional slope and landslide induced water waves. Journal of Hydraulic Engineering, 11: 54-59 (in Chinese).
      Panizzo, A., DeGirolamo, P., Petaccia, A., 2005. Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110, C12025. doi: 10.1029/2004JC002778
      Wang, Y.L., Chen, F.Y., Qi, H.L., et al., 1994. The effect of rockfall and landslide on channel and the study on the characteristics of surge generated by landslide. The Chinese Journal of Geological Hazard and Control, 5(3): 95-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH403.010.htm
      Yin, K.L., Du, J., Wang, Y., 2008. Analysis on surge triggered by dayantang landslide in Shuibuya reservoir of Qingjiang River. Rock and Soil Mechanics, 29(12): 3266-3270 (in Chinese with English abstract).
      Yuan, Y.Z., Chen, Q.S., 1990. Experimental study of slidewaves in reservoirs and numerical calculation. Journal of Hohai University (Natural Sciences), 18(5): 46-53 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HHDX199005005.htm
      Zweifel, A., Hager, W.H., Minor, H.E., 2006. Plane impulse waves in reservoirs. Journal of Waterway, Port, Coast, and Ocean Engineering, 132(5): 358-368. doi: 10.1061/(ASCE)0733-950X(2006)132:5(358)
      黄种为, 董兴林, 1983. 水库库岸滑坡激起涌浪的试验研究. 水利水电科学研究院科学研究论文集第13集(水力学). 北京: 水利电力出版社, 157-170.
      潘家铮, 1980. 建筑物的抗滑稳定和滑坡分析. 北京: 水利出版社.
      庞昌俊, 1985. 二维斜滑坡涌浪的试验研究. 水利学报, 11: 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198511005.htm
      王育林, 陈凤云, 齐华林, 等, 1994. 危岩体崩滑对航道影响及滑坡涌浪特征研究. 中国地质灾害与防治学报, 5(3): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH403.010.htm
      殷坤龙, 杜娟, 汪洋, 2008. 清江水布垭库区大堰塘滑坡涌浪分析. 岩土力学, 29(12): 3266-3270. doi: 10.3969/j.issn.1000-7598.2008.12.016
      袁银忠, 陈青生, 1990. 滑坡涌浪的数值计算及试验研究. 河海大学学报(自然科学版), 18(5): 46-53. doi: 10.3321/j.issn:1000-1980.1990.05.006
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(7)

      Article views (892) PDF downloads(50) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return