• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 6
    Jun.  2012
    Turn off MathJax
    Article Contents
    CHENG Qiu-ming, 2012. Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas. Earth Science, 37(6): 1109-1125. doi: 10.3799/dqkx.2012.118
    Citation: CHENG Qiu-ming, 2012. Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas. Earth Science, 37(6): 1109-1125. doi: 10.3799/dqkx.2012.118

    Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas

    doi: 10.3799/dqkx.2012.118
    • Received Date: 2012-10-22
      Available Online: 2021-11-09
    • Publish Date: 2012-06-15
    • In this paper, it is shown that the element concentration in the stream sediments in the covered areas can be very low due to decay and mask effects even if a thin layer of overburden exists. The examples introduced in the paper for prediction of mineral deposits of skarn types have demonstrated that the nonlinear singularity and generalized self-similarity theories and methods can be used to map anomalies for locating undiscovered mineral deposits in areas covered by transported regolith. Three main aspects of difficulties facing mineral exploration and mineral deposit prediction in covered areas are discussed in the paper which include weak anomalies detection and recognition, decomposition of complex and mixing anomalies due to multiple geo-processes, and application of evidential layers with missing or incomplete information due to covers. Various models have been proposed for prediction of various objects including felsic intrusions, skarn and hydrothermal alterations and local geochemical anomalies. Several datasets, including 1∶200 000 scale geological maps, stream sediment geochemical data, aeromagnetic and gravity data were applied for delineation of potential target areas for Fe mineral deposits of volcanic skarn and hydrothermal types in the areas covered by desert and Ternary to Quaternary sediments.

       

    • loading
    • Agterberg, F.P., 1989. Computer programs for mineral exploration. Science, 245(4913): 76-81. doi: 10.1126/science.245.4913.76
      Bonham-Carter, G.F., 1994. Geographic information system for geosciences: modelling with GIS. Pergamon Press, Oxford.
      Anand, R.R., Robertson, I.D.M., 2012. The role of mineralogy and geochemistry in forming anomalies on interfaces and in areas of deep basin cover: implications for exploration. Geochemistry: Exploration, Environment, Analysis, 12(1): 45-66. doi: 10.1144/1467-7873/10-RA-067
      Cameron, E.M., Hamilton, S.M., Leybourne, M.I., et al., 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019
      Cameron, E.M., Leybourne, M.I., Kelley, D.L., 2002. Exploring for deeply covered mineral deposits: formation of geochemical anomalies in northern Chile by earthquake-induced surface flooding of mineralized groundwaters. Geology, 30(11): 1007-1010. doi: 10.1130/0091-7613(2002)030<1007:EFDCMD>2.0.CO;2
      Cameron, E.M., Leybourne, M.I., Palacios, C., 2008. Economic geology models 1. geochemical exploration and metallogenic studies, northern Chile. Geoscience Canada, 35(3-4): 1-12. http://www.freepatentsonline.com/article/198169156.html
      Carrigan, C.R., Heinle, R.A., Hudson, G.B., 1996. Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature, 382: 528-531. doi: 10.1038/382528a0
      Chen, Y.L., 1999. Geochemistry of granitoids from the eastern Tianshan Mountains and northern Qinling Belt. Geological Publish House, Beijing (in Chinese).
      Chen, Y.C., Wang, D.H., 2010. Prediction classification of major mineral deposits types. Geological Publish House, Beijing (in Chinese).
      Cheng, Q.M., 1989. A method for estimation of resources from multiple populations. Journal of Changchun University of Earth Sciences, 19(5): 50-56(in Chinese with English abstract).
      Cheng, Q.M., Agterberg F.P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649
      Cheng, Q.M., 1999. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961. doi: 10.1016/S0098-3004(99)00060-6
      Cheng, Q.M., 2000. Geodata analysis system (GeoDAS) for mineral exploration: unpublished user's guide and exercise manual. Material for the training workshop on GeoDAS, Toronto, 204.
      Cheng, Q.M., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
      Cheng, Q.M., 2008a. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40(5): 503-532. doi: 10.1007/s11004-008-9172-6
      Cheng, Q.M., 2008b. A combined power-law and exponential model for streamflow recessions. Journal of Hydrology, 352(1-2): 157-167. doi: 10.1016/j.hydrol.2008.01.017
      Cheng, Q.M., 2008c. Singularity of mineralization and multi-fractal distribution of mineral deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 298-305(in Chinese with English abstract). http://www.researchgate.net/publication/289701679_Singularity_of_mineralization_and_multifractal_distribution_of_mineral_deposits
      Cheng, Q.M., 2011. Singularity modeling of geo-anomalies and recognition of anomalies caused by buried sources. Earth Science—Journal of China University of Geosciences, 36(2): 307-316 (in Chinese with English abstract).
      Cheng, Q.M., 2012a. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007
      Cheng, Q.M., 2012b. Multiplicative cascade processes and information integration for predictive mapping. Nonlinear Processes in Geophysics, 19: 57-68. doi: 10.5194/npg-19-57-2012
      Cheng, Q.M., 2012c. Vertical distribution of elements in regoliths over mineral deposits and implicationon mapping geochemical weak anomalies caused by buried sources in covered areas. Geochemistry: Environment, Exploration and Analysis(in press).
      Cheng, Q.M., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. eds., Proceedings of the fifth annual conference of the international association for mathematical geology. Natural Resources Research, 9(1): 43-52. doi: 10.1023/A:1010109829861
      Cheng, Q.M., Liu, J.T., Zhang, S.Y., et al., 2009. Application of GIS-Model builder technology for national mineral resource assessment. Earth Science—Journal of China University of Geosciences, 34(2): 338-346 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.036
      Cohen, D.R., Kelley, D.L., Anand, R., 2010. Major advances in exploration geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3-16. doi: 10.1144/1467-7873/09-215
      Deng, S.T., Guo, Z.J., Zhang, Z.C., 2006. Metallogenic age and significance of contact metasomatic type iron deposits in the eastern Tianshan. Geology and Prospecting, 42(6): 17-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzykt200606004
      Dunn, C.E., 2007. Biogeochemistry in mineral exploration: handbook of exploration and environmental geochemistry 9, Elsevier, Amsterdam. Geochemistry: Exploration, Environment, Analysis, 10: 17-26. http://www.sciencedirect.com/science/article/pii/S1874273407090018
      Einaudi, M.T., Burt, D.M., 1982. Introduction—terminology, classification and composition of skarn deposits. Economic Geology, 77(4): 745-754. doi: 10.2113/gsecongeo.77.4.745
      Goldberg, I.S., 1998. Vertical migration of elements from mineral deposits. Journal of Geochemical Exploration, 61(1-3): 191-202. doi: 10.106/S0375-6742(97)00045-9
      Govett, G.J.S., 1973. Differential secondary dispersion in transported soils and post-mineralization rocks: an electrochemical interpretation. In: Jones, M.J., ed., Geochemical exploration. Institution of Mining and Metallurgy, London, 81-91.
      Govett, G.J.S., 1976. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely shaped surface soil samples. Journal of Geochemical Exploration, 6(1-2): 359-382. doi: 10.1016/0376-6742(76)90024-8
      Jin, Y., Liu, Y.T., Xie, Y.L., 2005. Relationship between magmatism and polymetal mineralization in Dongwuqi area, Inner Mongolia. Geology and Mineral Resources of South China, (1): 8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200501001.htm
      Liu, D.Q., Tang, Y.L., Zhou, R.H., 1996. Metallogenic series types of ore deposits in Xinjiang. Geological Publishing House, Beijing (in Chinese).
      Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. Characteristics of regional mineralization in Daxinanling, Inner Mongolia, China. Earth Science Frontiers, 11(1): 270-277(in Chinese with English abstract).
      Ma, R.S., Shu, L.S., Sun, J.Q., 1997. The tectonic deformation, evolution and metallization in the eastern Tianshan Belt, northwest China. Geological Publish House, Beijing, 202 (in Chinese).
      Mann, A.W., 2010. Strong versus weak digestions: ligand-based soil extraction geochemistry. Geochemistry: Exploration, Environment, Analysis, 10(1): 17-26. doi: 10.1144/1467-7873/09-216
      Mann, A.W., Birrel, R.D., Fedikow, M.A.F., et al., 2005. Vertical ionic migration: mechanisms, soil anomalies, and sampling depth for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5(3): 201-210. doi: 10.1144/1467-7873/03-045
      McCammon, R.B., Botbol, J.M., Sinding-Larsen, R., et al., 1983. Characteristic analysis-1981: final program and a possible discovery. Mathematical Geology, 15(1): 59-83. doi: 10.1007/BF01030076
      Moon, C.J., 1999. Towards a quantitative model of downstream dilution of point source. Journal of Geochemical Exploration, 65(2): 111-132. doi: 10.106/S0375-6742(98)00065-X
      Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007. Re-Os isotopic age dating of molybdenite separates from the Chaobulengskarn iron-polymetallic deposit, Dong Ujimqin Banner, Inner Mongolia. ACTA Geoscientifica Sinica, 28(4): 315-323(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200704000.htm
      Nie, X.L., Hou, W.R., 2010. The discovery of the Diyanqinamu large-size Mo-Ag deposit, Inner Mongolia, and its geological significance. ACTA Geoscientica Sinica, 31(3): 469-472(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003026.htm
      Saaty, T.L., 1980. The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill Book Co., New York.
      Shao, J.D., Tao, J.X., Li, S.W., et al., 2009. The new progress in ore prospecting within Daxing'anling mineralization belt, China. Geological Bulletin of China, 28(7): 955-962(in Chinese with English abstract). http://www.researchgate.net/publication/296710610_The_new_progress_in_ore_prospecting_within_Daxing'_anling_mineralization_belt
      Singer, D.A., 1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Natural Resources Research, 2(2), 69-81. doi: 10.1007/BF02272804
      Smee, B.W., 1998. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration, 61(1-3): 149-172. doi: 10.1016/S0375-6472(98)00007-7
      Smee, B.W., 1983. Laboratory and field evidence in support of the electrochemically-enhanced migration of ions through glaciolacustrine sediment. Journal of Geochemical Exploration, 19(1-3): 277-304. doi: 10.1016/0375-6742(83)90022-5
      Wang, C.Y., Ma, R.S., 1994. Study on the regional metamorphism and the tectonic settings in the eastern Tianshanorogenic belt. Journal of Nanjing University (Natural Science Edition), 30(3): 494-503(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ403.017.htm
      Wang, D.H., Li, C.J., Chen, Z.H., et al., 2006. Metallogenic characteristics and direction in mineral search in the East Tianshan, Xinjiang, China. Geological Bulletin of China, 25(8): 910-915(in Chinese with English abstract). http://www.researchgate.net/publication/279675833_Metallogenic_characteristics_and_direction_in_mineral_search_in_the_East_Tianshan_Xinjiang_China
      Wang, X.Q., Zhang, B.M., Liu, X.M., 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101-112. http://www.researchgate.net/publication/283363571_Nanogeochemistry_deep-penetrating_geochemical_exploration_through_cover
      Wang, X.Q., Wen, X.Q., Rong, Y., 2007. Vertical variations and dispersion of elements in arid desert regolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163-171. doi: 10.1144/1467-7873/07-131
      Xu, L.Q., Chen, Z.Y., Chen, Z.H., et al., 2010. SHRIMP dating of medium-coarse-granite in Chaobuleng iron deposit, Dong Ujimqin, Inner Mongolia. Mineral Deposits, 29(2): 317-322(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201002014.htm
      Ye, R., Zhang, B.M., Yao, W.S., 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120-129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203014.htm
      Zhang, B.M., Chi, Q.H., Zhang, Y.S., 2012. Three-dimensional geochemical distribution patterns in regolith over a concealed gold deposits in arid desert terrains. Earth Science Frontiers, 19(3): 130-137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203015.htm
      Zhao, J., Wang, W.L., Dong, L.H., et al., 2012. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. Journal of Geochemical Exploration, 122: 81-89. doi: 10.1016/j.gexplo.2012.08.006
      Zhao, P.D., 2007. Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14(5): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200705002.htm
      Zhao, Y.M., Tan, H.J., Xu, Z.L., et al., 1983. The calcic-skarn iron ore deposits of Makeng type in Southwestern Fujian. Journal of Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (Special Issue 1): 1-141. http://www.researchgate.net/publication/291303483_The_calcic-skarn_iron_ore_deposit_of_making_type_in_southwestern_Fujian
      陈岳龙, 1999. 东天山、北秦岭花岗岩类地球化学. 北京: 地质出版社.
      陈毓川, 王登红, 2010. 重要矿产预测类型划分方案. 北京: 地质出版社.
      成秋明, 1989. 多母体资源总量模拟方法. 长春地质学院学报, 19(5): 50-56.
      成秋明, 2008c. 成矿过程奇异性与矿床多重分形分布. 矿物岩石地球化学通报, 27(3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200803014.htm
      成秋明, 2011. 地质异常的奇异性度量与隐伏源致矿异常识别. 地球科学, 36 (2): 307-316. doi: 10.3799/dqkx.2011.032
      成秋明, 刘江涛, 张生元, 等, 2009. GIS中的空间建模器技术及其在全国矿产资源潜力预测中的应用. 地球科学, 34(2): 338-346. doi: 10.3321/j.issn:1000-2383.2009.02.017
      邓松涛, 郭召杰, 张志诚, 2006. 东天山接触交代型铁矿成矿时代的确定及其意义. 地质与勘探, 42(6): 17-20. doi: 10.3969/j.issn.0495-5331.2006.06.004
      金岩, 刘玉堂, 谢玉玲, 2005. 内蒙古东乌旗地区岩浆活动与多金属成矿的关系. 华南地质与矿产, (1): 8-12. doi: 10.3969/j.issn.1007-3701.2005.01.002
      刘德权, 唐延龄, 周汝洪. 1996. 中国新疆矿床成矿系列. 北京: 地质出版社.
      刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401036.htm
      马瑞士, 舒良树, 孙家齐, 1997. 东天山构造演化与成矿. 北京: 地质出版社, 1-201.
      聂凤军, 张万益, 杜安道, 等, 2007. 内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 地球学报, 28(4): 315-323. doi: 10.3321/j.issn:1006-3021.2007.04.001
      聂秀兰, 侯万荣. 2010. 内蒙古迪彦钦阿木大型钼-银矿床的发现及地质意义. 地球学报, 31(3): 469-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003026.htm
      邵积东, 陶继雄, 李四娃, 等, 2009. 大兴安岭成矿带找矿工作新进展. 地质通报, 28(7): 955-962. doi: 10.3969/j.issn.1671-2552.2009.07.015
      王赐银, 马瑞士, 1994. 东天山造山带区域变质作用及其构造环境研究. 南京大学学报(自然科学版), 30(3): 494-503. doi: 10.3321/j.issn:0469-5097.1994.03.001
      王登红, 李纯杰, 陈郑辉, 等, 2006. 东天山成矿规律与找矿方向的初步研究. 地质通报, 25(8): 910-915. doi: 10.3969/j.issn.1671-2552.2006.08.002
      王学求, 张必敏, 刘学敏, 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203012.htm
      许立权, 陈志勇, 陈郑辉, 等, 2010. 内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩SHRIMP年令及其意义. 矿床地质, 29(2): 317-322. doi: 10.3969/j.issn.0258-7106.2010.02.013
      叶荣, 张必敏, 姚文生, 等, 2012. 隐伏矿床上方纳米铜颗粒存在形式与成因. 地学前缘, 19(3): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203014.htm
      张必敏, 迟清华, 张永勤, 2012. 干旱荒漠覆盖区隐伏金矿上方覆盖层三维地球化学分布模式. 地学前缘, 19(3): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203015.htm
      赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001
      赵一鸣, 毕承思, 谭惠静, 等, 1983. 闽西南地区马坑式钙矽卡岩型铁矿床. 中国地质科学院矿床地质研究所所刊. (专辑1): 1-141. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300007002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)

      Article views (726) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return