• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 6
    Jun.  2012
    Turn off MathJax
    Article Contents
    XIE Shu-yun, JIAO Yang, YAN Min, XIN Dong-lin, XU De-yi, CHENG Qiu-ming, 2012. Geochemical Vertical Transportation along Soil Profiles in Baiyinnuoer Pb-Zn Deposit Areas, Mongolia, China. Earth Science, 37(6): 1140-1148. doi: 10.3799/dqkx.2012.121
    Citation: XIE Shu-yun, JIAO Yang, YAN Min, XIN Dong-lin, XU De-yi, CHENG Qiu-ming, 2012. Geochemical Vertical Transportation along Soil Profiles in Baiyinnuoer Pb-Zn Deposit Areas, Mongolia, China. Earth Science, 37(6): 1140-1148. doi: 10.3799/dqkx.2012.121

    Geochemical Vertical Transportation along Soil Profiles in Baiyinnuoer Pb-Zn Deposit Areas, Mongolia, China

    doi: 10.3799/dqkx.2012.121
    • Received Date: 2012-07-19
      Available Online: 2021-11-09
    • Publish Date: 2012-06-15
    • Geochemical soil survey is of great significance to find the geochemical soil anomalies related to ore deposits. Baiyinnuoer lead-zinc deposit in Inner Mongolia is one typical Skarn deposit in North China and detailed geological mining survey had been done in this area to prospect ore-bodies. In this study, 3 typical vertical soil profiles had been sampled to study the geochemical vertical transportation modes and then to further explore new ideas for mineral resource prospecting. Soil profile 6 was collected upon one Pb-Zn ore-body. Profile 3 and Profile 8 were 1 km and 4.5 km away from Profile 6, respectively. Along Profile 6 and Profile 3, soil magnetic susceptibility values decrease significantly with the depth of the soil samples increasing. The distribution patterns of all the 9 geochemical elements along Profile 6 display a similar trend which shows the concentrations are lower in both topsoil layer and half-weathered rock layer, but higher in residual subsoil layer, showing as "C-shape", which are quite different from those patterns for profile 3 and profile 8, since the element concentration values do fluctuate violently without a similar trend as shown in Profile 6. The research approach and results of this paper could be useful references for evaluating mineral resources in covered areas from the surface geochemical soil surveys and it also could provide new avenues for detecting the geochemical mechanisms for vertical transportation.

       

    • loading
    • Akcay, M., Lermi, A., Van, A., 1998. Biogeochemical exploration for massive sulphide deposits in areas of dense vegetation: an orientation survey around the Kankoy deposit. Journal of Geochemical Exploration, 63(3): 173-187. doi: 10.1016/S0375-6742(98)0051-X
      Anand, R.R., Cornelius, M., Phang, C., 2007. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, western Australia: a contribution towards understanding metal transportation processes. Geochemistry-Exploration, Environment, Analysis, 7(3): 267-288. doi: 10.1144/1467-7873/07-142
      Cameron, E.M., Hamilton, S.M., Leybourne, M.I., et al., 2004. Finding deeply buried deposits using geochemistry. Geochemistry Exploration Environment Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019
      Graham, J.W., 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Bull. Geol. Soc. Am. , 1954, 65: 1257-1258. http://www.researchgate.net/publication/284665236_Magnetic_susceptibility_anisotropy_an_unexploited_petrofabric_element
      Hale, M., 2000. Handbook of exploration geochemistry. Geochemical Remote Sensing of the Sub-surface, 7: 1-549.
      Hamilton, S.M., 2000. Spontaneous potential and electrochemical cells. In: Hale, M., Govett, G.J.S., eds., Geochemical remote sensing of the sub-surface. Handbook of Exploration Geochemistry, Elsevier, Amsterdam, 7: 81-119.
      Hao, L.B., Ma, L., Zhao, H.B., 2004. Elemental homogenization during weathering and pedogenesis of volcanic rocks from North Da Hinggan Ling. Geochimica, 33(2): 131-138(in Chinese with English abstract).
      Jiang, Y.H., Wang, R.H., Kang, X.J., 2006. Study on distribution of soil magnetic susceptibility and Cu, Zn effective and total contents in Huzhou City, Changjiang River delta. Resources Survey and Environment, 27(3): 223-232(in Chinese with English abstract).
      Ke, W.S., Xi, H.A., Yang, Y., et al., 2001. Analysis on characteristics of phytogeochemistry of Elsholtzia haichowensis in Daye Tonglushan copper mine. Acta Ecologica Sinica, 21(6): 907-912(in Chinese with English abstract).
      Kristiansson, K., Malmqvist, L., 1982. Evidence for nondiffusive transport of 86222Rn in the ground and a new physical model for the transport. Geophysics, 47(10): 1444-1452. doi: 10.1190/1.1441293
      Shang, Y.J., Wu, H.W., Qu, Y.X., 2001. Comparison of chemical indices and micro-properties of weathering degrees of granitic rocks—a case study from Kowloon, Hong Kong. Chinese Journal of Geology, 36(3): 279-294(in Chinese with English abstract).
      Sun, C., Li, Y.F., Wang, D.Y., et al., 2011. Geochemical characteristics of rare-earth elements in the soils around iron mine regions of Anshan. Journal of Jilin Agricultural University, 33(3): 301-305(in Chinese with English abstract).
      Sun, C.X., Wang, S.J., Ji, H.B., 2002. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province. China. Geochimica, 31(2): 119-128(in Chinese with English abstract).
      Wang, C.Y., 1987. The foundation of geochemical prospecting. Geological Publishing House, Beijing (in Chinese).
      Wang, L., Li, T.C., Yang, X.Y., 2012. Application of borehole core magnetic susceptibility and PXRF measurement to the Moon Mountain copper-iron mining area in Chile and prospecting prediction. Geology and Prospecting, 48(2): 396-405(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201202024.htm
      Wang, X.Q., 1996. The current situation and future of geogas. Foreign Geoexploration Technology, (5): 12-18(in Chinese with English abstract).
      Wang, X.Q., 2005. Conceptual model of deep-penetrating geochemical migration. Geological Bulletin of China, 24(10-11): 892-896(in Chinese with English abstract).
      Wang, X.Q., Liu, Z.Y., Bai, J.F., et al., 2005. Deep-penetration geochemistry-comparison studies of two concealed deposits. Computing Techniques for Geophysical and Geochemical Exploration, 27(3): 250-255(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT200503014.htm
      Wang, X.Q., Wen, X.Q., Rong, Y., et al., 2007. Vertical variations and dispersion of elements in arid desert regolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry-Exploration Environment Analysis, 7(2): 163-171. doi: 10.1144/1467-7873/07-131
      Wang, X.Q., Zhang, B.M., Chi, Q.H., 2009. Experimental evidence of deep-penetrating geochemical migration model. Acta Mineralogica Sinica, (S1): 485-486(in Chinese with English abstract).
      Xie, X.J., Wang, X.Q., 2003. Recent developments on deep-penetrating geochemistry. Earth Science Frontiers, 10(1): 225-238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200301041.htm
      Xiong, W.L., 1996. The basic types and prospects of weathered residual gold deposits in Jiangxi province. Jiangxi Geology, 23(1): 1-6(in Chinese with English abstract).
      Yu, H.T., 2007. The research about Daxing'anling of a large quantity elements content and distribution in seasonal permafrost(Dissertation). Inner Mongolia Agricultural University, Inner Mongolia (in Chinese).
      Yu, C.T., Long, J.J., 2010. Mineralization geological conditions and gold geochemical research in Sanfang Yongfeng County. Journal of East China Institute of Technology (Natural Science), 34(1): 67-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201101014.htm
      Zhang, S.H., Zhou, X.Q., 1999. A review of the applications of anisotropy of susceptibility to earth science. Geological Review, 45(6): 613-620(in Chinese with English abstract).
      Zhang, B.M., 2011. Deep-penetrating geochemistry: mechanism and methods in Gobi areas(Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese).
      Zhao, Z.Z., Bi, H., Yang, Y.G., et al., 2005. Spatial distribution pattern of trace elements contents of latosol in the west of Hainan island. Earth and Environment, 33(2): 69-73(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200502010.htm
      Zhou, G.H., Ma, S.M., Yu, J.S., et al., 2002. Vertical distribution of elements in soil profiles and their significance for geological and environmental. Geology and Prospecting, 38(06): 70-75(in Chinese with English abstract).
      郝立波, 马力, 赵海滨, 2004. 岩石风化成土过程中元素均一化作用及机理: 以大兴安岭北部火山岩区为例. 地球化学, 33(2): 131-138. doi: 10.3321/j.issn:0379-1726.2004.02.003
      姜月华, 王润华, 康晓钧, 2006. 长三角湖州市土壤磁化率与铜、锌有效量和全量分布规律. 资源调查与环境, 27(3): 223-232. doi: 10.3969/j.issn.1671-4814.2006.03.008
      柯文山, 席红安, 杨毅, 等, 2001. 大冶铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析. 生态学报, 21(6): 907-912. doi: 10.3321/j.issn:1000-0933.2001.06.008
      尚彦军, 吴宏伟, 曲永新, 2001. 花岗岩风化程度的化学指标及微观特征对比——以香港九龙地区为例. 地质科学, 36(3): 279-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103002.htm
      孙超, 李月芬, 王冬艳, 等, 2011. 鞍山市铁矿区土壤稀土元素的地球化学特征. 吉林农业大学学报, 33(3): 301-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201103016.htm
      孙承兴, 王世杰, 季宏兵, 2002. 碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理. 地球化学, 31(2): 119-128. doi: 10.3321/j.issn:0379-1726.2002.02.003
      王崇云, 1987. 地球化学找矿基础. 北京: 地质出版社.
      王磊, 李天成, 杨新雨, 2012. 钻孔岩心磁化率及PXRF测量在智利月亮山铁铜矿区应用与找矿预测. 地质与勘探, 48(2): 396-405. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202024.htm
      王学求, 1996. 地气的研究现状与未来. 国外地质勘探技术, (5): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDK199605004.htm
      王学求, 2005. 深穿透地球化学迁移模型. 地质通报, 24(10-11): 892-896. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1004.htm
      王学求, 张必敏, 迟清华, 2009. 穿透性地球化学迁移模型的实验证据. 矿物学报, (S1): 485-486. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1253.htm
      王学求, 刘占元, 白金峰, 等, 2005. 深穿透地球化学对比研究两例. 物探化探计算技术, 27(3): 250-255. doi: 10.3969/j.issn.1001-1749.2005.03.015
      谢学锦, 王学求, 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225-238. doi: 10.3321/j.issn:1005-2321.2003.01.027
      熊文亮, 1996. 江西省风化残积型金矿基本类型及找矿前景分析. 江西地质科技, 23(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZK199601000.htm
      于成涛, 龙军军, 2010. 永丰县三坊地区成矿地质条件及金地球化学研究. 东华理工大学学报(自然科学版), 34(1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201101014.htm
      于海涛, 2007. 大兴安岭林区季节性冻土中大量元素含量及分布特征的研究(硕士学位论文). 内蒙古: 内蒙古农业大学.
      张必敏, 2011. 戈壁覆盖区深穿透地球化学异常形成机理与找矿方法(博士学位论文). 北京: 中国地质科学院.
      张拴宏, 周显强, 1999. 磁化率各向异性地学应用综述, 地质论评, 45(6): 613-620.
      赵志忠, 毕华, 杨元根, 等, 2005. 海南岛西部地区砖红壤中微量元素含量及其分布特征. 地球与环境, 33(2): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200502010.htm
      周国华, 马生明, 喻劲松, 等, 2002. 土壤剖面元素分布及其地质、环境意义. 地质与勘探, 38(6): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200206017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (535) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return