• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 1
    Jan.  2013
    Turn off MathJax
    Article Contents
    ZHANG Han, SUN Feng-yue, HU An-xin, 2013. Geochemistry and Geochronology of Shangyupo Biotite Schist in the Zhongtiaoshan Mountains: Implications for Its Petrogenesis. Earth Science, 38(1): 10-24. doi: 10.3799/dqkx.2013.002
    Citation: ZHANG Han, SUN Feng-yue, HU An-xin, 2013. Geochemistry and Geochronology of Shangyupo Biotite Schist in the Zhongtiaoshan Mountains: Implications for Its Petrogenesis. Earth Science, 38(1): 10-24. doi: 10.3799/dqkx.2013.002

    Geochemistry and Geochronology of Shangyupo Biotite Schist in the Zhongtiaoshan Mountains: Implications for Its Petrogenesis

    doi: 10.3799/dqkx.2013.002
    • Received Date: 2012-02-15
    • Publish Date: 2013-01-15
    • The primary compositions of the anticline core at Shangyupo are Beiyu meta-granitoid, meta-rhyolite and meta-mafic rocks. The age and petrogenesis of the biotite schist have been under debate for a very long time. The petrology features and geochemistry of Shangyupo amphibole/scapolite biotite schist are cricoid gradually distributed from the anticlinal core to its edge. The K, Ca, Na, Rr, Sr and Ba have been changed systematically by the high salinity fluid from the ductile shear belts, and Ta and LREE are also shown to have been dramatically changed in this event. LA-MC-ICPMS zircon U-Pb dating for the Shangyupo meta-rhyolite and the meta-ryholite of Jiangxian group yield the weighted mean 207Pb/206Pb age of 2 160.5±7.8 Ma and 2 161.3±1.5 Ma respectively. The Shangyupo meta-ryhorite and biotite schist may have been formed during the Jiangxian volcano event between 2.20~2.15 Ga, based on the chronology and comparison to related rocks. The HFSE pairs show that the biotite schist is a subalkaline mafic rocks instead of the alkaline mafic rocks as previously suggested. The Jiangxian event may represent a tensional event related to the subduction, based on the comprehensive geological information of Zhongtiaoshan area.

       

    • loading
    • Cervantes, P., Wallace, P.J., 2003. Role of H2O in Subduction-Zone Magmatism: New Insights from Melt Inclusions in High-Mg Basalts from Central Mexico. Geology, 31(3): 235-238. doi: 10.1130/0091-7613(2003)031<0235:rohois>2.0.co;2
      Chakrabarti, R., Basu, A.R., Santo, A.P., et al., 2009. Isotopic and Geochemical Evidence for a Heterogeneous Mantle Plume Origin of the Virunga Volcanics, Western Rift, East African Rift System. Chemical Geology, 259(3-4): 273-289. doi: 10.1016/j.chemgeo.2008.11.010
      Co-editted, 1978. Geology of Copper Deposits in Zhongtiaoshan Mountains. Geological Publishing House, Beijing (in Chinese).
      Frietsch, R., Tuisku, P., Martinsson, O., et al., 1997. Early Proterozoic Cu-(Au) and Fe Ore Deposits Associated with Regional Na-Cl Metasomatism in Northern Fennoscandia. Ore Geology Reviews, 12(1): 1-34. doi: 10.1016/S0169-1368(96)00013-3
      Fu, Z.R., Li, D.W., Li, X.F., et al., 1992. Structural Analysis on Ore-Controlling of Metamorphic Core Complexes and Denudational Faults. China University of Geosciences Press, Wuhan (in Chinese).
      Furman, T., 2007. Geochemistry of East African Rift Basalts: An Overview. Journal of African Earth Sciences, 48(2-3): 147-160. doi: 10.1016/j.jafrearsci.2006.06.009
      Glassley, W.E., Korstgård, J.A., Sørensen, K., 2010. K-Rich Brine and Chemical Modification of the Crust during Continent-Continent Collision, Nagssugtoqidian Orogen, West Greenland. Precambrian Research, 180(1-2): 47-62. doi: 10.1016/j.precamres.2010.02.020
      Grenne, T., Slack, J.F., 2005. Geochemistry of Jasper Beds from the Ordovician Løkken Ophiolite, Norway: Origin of Proximal and Distal Siliceous Exhalites. Economic Geology, 100(8): 1511-1527. doi: 10.2113/gsecongeo.100.8.1511
      Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H
      Hubbard, M.S., 1996. Ductile Shear as A Cause of Inverted Metamorphism: Example from the Nepal Himalaya. Journal of Geology, 104(4): 493-499. doi: 10.1086/629842
      Hunt, J., Baker, T., Thorkelson, D., 2005. Regional-Scale Proterozoic IOCG-Mineralized Breccia Systems: Examples from the Wernecke Mountains, Yukon, Canada. Mineralium Deposita, 40(5): 492-514. doi: 10.1007/s00126-005-0019-5
      Kullerud, K., 1999. Cl-Scapolite, Cl-Amphibole, and Plagioclase Equilibria in Ductile Shear Zones at Nusfjord, Lofoten, Norway: Implications for Fluid Compositional Evolution during Fluid-Mineral Interaction in the Deep Crust. Geochimica et Cosmochimica Acta, 63(22): 3829-3844. doi: 10.1016/S0016-7037(99)00150-7
      Kusky, T.M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. doi: 10.1016/j.gr.2011.01.004
      Lentz, D.R., 1999. Petrology, Geochemistry, and Oxygen Isotope Interpretation of Felsic Volcanic and Related Rocks Hosting the Brunswick 6 and 12 Massive Sulfide Deposits (Brunswick Belt), Bathurst Mining Camp, New Brunswick, Canada. Economic Geology, 94(1): 57-86. doi: 10.2113/gsecongeo.94.1.57
      Liu, Y.S., Hu Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Lottermoser, B.G., 1989. Rare Earth Element Study of Exhalites within the Willyama Supergroup, Broken Hill Block, Australia. Mineralium Deposita, 24(2): 92-99. doi: 10.1007/BF00206309
      Manning, C.E., 2004. The Chemistry of Subduction-Zone Fluids. Earth and Planetary Science Letters, 223(1-2): 1-16. doi: 10.1016/j.epsl.2004.04.030
      Marocchi, M., Hermann, J., Tropper, P., et al., 2010. Amphibole and Phlogopite in "Hybrid" Metasomatic Bands Monitor Trace Element Transfer at the Interface Between Felsic and Ultramafic Rocks (Eastern Alps, Italy). Lithos, 117(1-4): 135-148. doi: 10.1016/j.lithos.2010.02.011
      Moore, J.M., 2010. Comparative Study of the Onganja Copper Mine, Namibia: A Link Between Neoproterozoic Mesothermal Cu(-Au) Mineralization in Namibia and Zambia. South African Journal of Geology, 113(4): 445-460. doi: 10.2113/gssajg.113.4.445
      Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257-A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247-265. doi: 10.1111/j.1751-908X.2008.00914.x
      Oliver, N.H.S., Rawling, T.J., Cartwright, I., et al., 1994. High-Temperature Fluid-Rock Interaction and Scapolitization in an Extension-Related Hydrothermal System, Mary Kathleen, Australia. Journal of Petrology, 35(6): 1455-1491. doi: 10.1093/petrology/35.6.1455
      Pollard, P.J., 2001. Sodic (-Calcic) Alteration in Fe-Oxide-Cu-Au Districts: An Origin Via Unmixing of Magmatic H2O-CO2-NaCl±CaCl2-KCl Fluids. Mineralium Deposita, 36(1): 93-100. doi: 10.1007/s001260050289
      Rooney, T.O., 2010. Geochemical Evidence of Lithospheric Thinning in the Southern Main Ethiopian Rift. Lithos, 117(1-4): 33-48. doi: 10.1016/j.lithos.2010.02.002
      Shinjo, R., Chekol, T., Meshesha, D., et al., 2010. Geochemistry and Geochronology of the Mafic Lavas from the Southeastern Ethiopian Rift (the East African Rift System): Assessment of Models on Magma Sources, Plume-Lithosphere Interaction and Plume Evolution. Contributions to Mineralogy and Petrology, 162(1): 209-230. doi: 10.1007/s00410-010-0591-2
      Sibuet, J.C., Letouzey, J., Barbier, F., et al., 1987. Back Arc Extension in the Okinawa Trough. Journal of Geophysical Research, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041
      Sun, D. Z, Hu, W.X., 1993. Precambrian Chronological-Tectonic Frame and Crustal Texture in Zhongtiao Mountains. Geological Publishing House, Beijing (in Chinese).
      Sun, H.T., Zhang, Z.Q., 1994. Sm-Nd Isotopic Age of Bimodal K-Rich Meta-Volcanic Rocks in Zhongtiaoshan Mountains and Its Implications. Chinese Science Bulletin, 39(14): 1343-1344 (in Chinese). doi: 10.1360/csb1994-39-14-1343
      Taylor, B., Martinez, F., 2003. Back-arc Basin Basalt Systematics. Earth and Planetary Science Letters, 210(3-4): 481-497. doi: 10.1016/s0012-821x(03)00167-5
      Wang, C.Z., 1991. New Recognition on the "Meta-Acid Volcanic Rocks of the Jiangxian Group" in the Core Region of the Hujiayu-Shangyupo Anticline of the Zhongtiaoshan Mountains. Regional Geology of China, (2): 176-179, 181 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD199102012.htm
      Wang, C.Z., Song, H.L., Fu, Z.R., 1990. Deformation Partitioning and Determination of Shangyupo Meta-Basic Intrusive Sheet, Zhongtiaoshan Mountain. Geoscience-Journal of Graduate School, China University of Geosciences, 4(4): 35-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ199004003.htm
      Wang, J., Hattori, K.H., Kilian, R., et al., 2007. Metasomatism of Sub-Arc Mantle Peridotites Below Southernmost South America: Reduction of fO2 by Slab-Melt. Contributions to Mineralogy and Petrology, 153(5): 607-624. doi: 10.1007/s00410-006-0166-4
      White, R., McKenzie, D., 1989. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research, 94(B6): 7685-7729. doi: 10.1029/JB094iB06p07685
      Whitford, D.J., Korsch, M.J., Porritt, P.M., et al., 1988. Rare-Earth Element Mobility Around the Volcanogenic Polymentallic Massive Sulfide Deposit at Que River, Tasmania, Australia. Chemical Geology, 68(1-2): 105-119. doi: 10.1016/0009-2541(88)90090-3
      Whitford, D.J., McPherson, W.P.A., Wallace, D.B., 1989. Geochemistry of the Host Rocks of the Volcanogenic Massive Sulfide Deposit at Que River, Tasmania. Economic Geology, 84(1): 1-21. doi: 10.2113/gsecongeo.84.1.1
      Wood, S.A., Williams-Jones, A.E., 1994. The Aqueous Geochemistry of the Rare-Earth Elements and Yttrium 4. Monazite Solubility and REE Mobility in Exhalative Massive Sulfide-Depositing Environments. Chemical Geology, 115(1-2): 47-60. doi: 10.1016/0009-2541(94)90144-9
      Yu, S.Q., Liu, S.W., Tian, W., et al., 2006. SHRIMP Zircon U-Pb Chronology and Geochemistry of the Henglingguan and Beiyu Granitoids in the Zhongtiao Mountains, Shanxi Province. Acta Geologica Sinica-English Edition, 80(6): 912-924. doi: 10.1111/j.1755-6724.2006.tb00312.x
      Zhai, M.G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China-Earth Sciences, 54(8): 1110-1120. doi: 10.1007/s11430-011-4250-x
      Zhao, G.C., Sun, M., Wilde, S.A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2): 91-123. doi: 10.1016/j.earscirev.2004.02.003
      Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6
      《中条山铜矿地质》编写组, 1978. 中条山铜矿地质. 北京: 地质出版社.
      傅昭仁, 李德威, 李先福, 等, 1992. 变质核杂岩及剥离断层的控矿构造解析. 武汉: 中国地质大学出版社.
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      孙大中, 胡维兴, 1993. 中条山前寒武纪年代构造格架和年代地壳结构. 北京: 地质出版社.
      孙海田, 张宗清, 1994. 中条山地区双峰态钾质火山岩系Sm-Nd同位素年龄及意义. 科学通报, 39(14): 1343-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199414028.htm
      王春增, 1991. 中条山胡家峪-上玉坡背斜核部"绛县群变酸性火山岩" 的新认识. 中国区域地质, (2): 176-179, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199102012.htm
      王春增, 宋鸿林, 傅昭仁, 1990. 变形分解作用与中条山上玉坡变基性侵入岩席的厘定. 现代地质, 4(4): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199004003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(2)

      Article views (3709) PDF downloads(400) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return