Citation: | DUAN Yi, WU Ying-zhong, YAO Jing-li, LIU Xian-yang, SUN Tao, HE Jin-xian, XU Li, XIA Jia, ZHANG Xiao-li, 2013. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1): 87-93. doi: 10.3799/dqkx.2013.008 |
Behar, F., Vandenbroucke, M., Teermann, S.C., et al., 1995. Experimental Simulation of Gas Generation from Coals and a Marine Kerogen. Chemical Geology, 126: 247-260. doi: 10.1016/0009-2541(95)00121-2
|
Clayton, J.L., 1998. Geochemistry of Coalbed Gas—A Review. International Journal of Coal Geology, 35: 159-173. doi: 10.1016/S0166-5162(97)00017-7
|
Cramer, B., 2004. Methane Generation from Coal during Open System Pyrolysis Investigate by Isotope Specific. Gaussian Distributed Reaction Kinetics. Organic Geochemistry, 35(2): 379-392. doi: 10.1016/j.orggeochem.2004.01.004
|
Chen, J.P., Deng, C.P., Wang, H.T., et al., 2006. Biomarker and Its Implication of Pyrolysis Oils of Macerals from Jurassic Coal Measures. Northwest China. Geochimica, 35(2): 141-150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200602004.htm
|
Dai, J.X., Qi, H.F., 1989. The Relationship between δ13C and Ro in China's Coal-Formed Gas. Chinese Science Bulletin, 34(9): 690-692 (in Chinese with English abstract). doi: 10.1360/csb1989-34-9-690
|
Duan, Y., Zhang, X.L., Sun, T., et al., 2011. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Herbaceous Swamp Peat at Different Thermal Maturity Stages. Chinese Science Bulletin, 56(13): 1383-1389. doi: 10.1007/s11434-011-4356-8
|
Duan, Y., Sun, T., Liu, J.F., et al., 2010. Thermal Simulation Experiment and Application of Staged Evolution of Coalbed Methane Carbon Isotope. Acta Sedimentologica Sinica, 28(2): 401-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201002025.htm
|
Duan, Y., Wu, B.X., Zheng, C.Y., et al., 2005a. Studies on Thermal Simulation of the Formation and Evolution of Coalbed Gas. Chinese Science Bulletin, 50: 40-44. doi:10.1007/BF 0318 4081
|
Duan, Y., Wu, B.X., Zheng, C.Y., et al. . 2005b. Studies on Kinetics of Hydrocarbon Generation from Coals in Qinshui Basin. Chinese Science Bulletin, 50(17): 1904-1911. doi: 10.1360/04wd0114
|
Kotarba, M.J., Rice, D.D., 2001. Composition and Origin of Coalbed Gases in the Lower Silesian Basin, Southwest Poland. Applied Geochem., 16: 895-910. doi: 10.1016/S0883-2927(00)00058-5
|
Landais, P., 1991. Assessement of Coal Potential Evolution by Experimental Simulation of Natural Coalification. Organic Geochemistry, 17: 705-710. doi: 10.1016/0146-6380(91)90014-B
|
Li, J.S., 1988. The Significance of Lignite Coalification of Pressure and Heat Simulation. Petroleum Geology and Experiment, 10(1): 72-78 (in Chinese with English abstract).
|
Liu, D.M., Yang, Q., Tang, D.Z., 1997. Reaction Kinetics of Coalification in Ordos Basin. China. In: Yang, Q., ed., Geology of Fossil Fuel-Coal. The Netherlands, Utrecht, 147-159.
|
Liu, Q.Y., Liu, W.H., Dai, J.X., 2007. Characterization of Pyrolysates from Maceral Components of Tarim Coals in Closed System Experiments and Implications to Natural Gas Generation. Organic Geochemistry, 38(6): 921-934. doi: 10.1016/j.orggeochem.2007.02.002
|
Porada, S., 2004. The Reactions of Formation of Selected Gas Products during Coal Pyrolysis. Fuel, 83(9): 1191-1196. doi: 10.1016/j.fuel.2003.11.007
|
Qin, Y., Tang, X.Y., Ye, J.P., et al., 2000. Characteristics and Origins of Stable Carbon Isotope in Coalbed Methane of China. Journal of China University of Mining & Technology, 29(2): 113-119 (in Chinese with English abstract). http://www.researchgate.net/publication/279583362_Characteristics_and_origins_of_stable_carbon_isotope_in_coal-bed_methane_of_China
|
Raymond, M., Landais, P., 1994. Artificial Coalification: Comparison of Confined Pyrolysis and Hydrous Pyrolysis. Fuel, 73(11): 1691-1696. doi: 10.1016/0016-2361(94)90154-6
|
Smith, J.W., Pallasser, R.J., 1996. Microbiological Origin of Australian Coalbed Methane. AAPG, 80: 891-897. doi: 10.1016/S0140-6701(97)80133-6
|
Stahl, J.W., Carey, B.D., 1975. Source-Rock Identification by Isotope Analyses of Natural Gases from Fields in the Val Verde and Delaware Basins, West Texas. Chem. Geol., 16: 257-267. doi: 10.1016/0009-2541(75)90065-0
|
Sang, S.X., Liu, H.J., Li, G.Z., et al., 1997. Generation and Enrichment of Coalbed Methane I: Gas Yield in Effective Stage and Concentration of Coalbed Methane. Coal Geology & Exploration, 25(6): 14-17 (in Chinese with English abstract). http://www.researchgate.net/publication/284126414_Generation_and_enrichment_of_coal_bed_methane_I_Gasyield_in_effective_stage_and_concentration_of_coal_bed_methane_in_Chinese
|
Zhao, M.J., Song, Y., Su, X.B., et al., 2005. Key Geological Time of Deciding the Geochemical Characteristics of Coalbed Methane. Natural Gas Industry, 25(1): 51-54 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/trqgy200501015
|
陈建平, 邓春萍, 王汇彤, 等, 2006. 中国西北侏罗纪煤系显微组分热解油生物标志物特征及其意义. 地球化学, 35(2): 141-150. doi: 10.3321/j.issn:0379-1726.2006.02.004
|
戴金星, 戚厚发, 1989. 我国煤成气的δ13C-Ro关系. 科学通报, 34(9): 690-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198909013.htm
|
段毅, 孙涛, 刘军峰, 等, 2010. 煤层气碳同位素阶段演化的模拟实验研究及其应用. 沉积学报, 28(2): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002025.htm
|
李杰生, 1988. 褐煤煤化作用的加压加热模拟实验及其意义. 石油实验地质, 10(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198801008.htm
|
秦勇, 唐修义, 叶建平, 等, 2000. 中国煤层甲烷稳定碳同位素分布与成因探讨. 中国矿业大学学报, 29 (2): 113-119. doi: 10.3321/j.issn:1000-1964.2000.02.001
|
桑树勋, 刘焕杰, 李贵中, 等, 1997. 煤层气生成与煤层气富集I: 有效阶段生气量与煤层气富集. 煤田地质与勘探, 25(6): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT706.003.htm
|
赵孟军, 宋岩, 苏现波, 等, 2005. 决定煤层气地球化学特征的关键地质时期. 天然气工业, 25(1): 51-54. doi: 10.3321/j.issn:1000-0976.2005.01.015
|