• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 1
    Jan.  2013
    Turn off MathJax
    Article Contents
    DUAN Yi, WU Ying-zhong, YAO Jing-li, LIU Xian-yang, SUN Tao, HE Jin-xian, XU Li, XIA Jia, ZHANG Xiao-li, 2013. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1): 87-93. doi: 10.3799/dqkx.2013.008
    Citation: DUAN Yi, WU Ying-zhong, YAO Jing-li, LIU Xian-yang, SUN Tao, HE Jin-xian, XU Li, XIA Jia, ZHANG Xiao-li, 2013. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1): 87-93. doi: 10.3799/dqkx.2013.008

    Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages

    doi: 10.3799/dqkx.2013.008
    • Received Date: 2012-09-28
    • Publish Date: 2013-01-15
    • Coalbed methane (CBM) accumulation models include continuous gas accumulation and staged gas accumulation. However, the study on geochemistry characteristics and evaluation index of staged accumulation CBM is inadequate. This study has obtained the carbon and hydrogen isotopic compositions and their evolution laws of methane and ethane generated at different evolution stages by thermal simulation of samples prepared using a forest marsh peat at different temperatures. The data show that the carbon and hydrogen isotopic compositions tend to increase heavy isotope with increasing evolution level of the starting sample. At the same time, it is found that the maturity level of the starting sample influences the carbon isotopic compositions of methane and ethane, while maturity of gases affects their hydrogen isotopic compositions. The relationship between Ro values and the carbon and hydrogen isotopic compositions of gases generated by coal-forming organic matter at different evolution stages as well as the carbon or hydrogen isotopic relationship between methane and ethane are established. These results provide scientific evidence for studying the genesis of CBM generated at different maturity intervals and understanding the geochemistry characteristics of staged accumulation CBM, and they were applied to study on CBM from the southern Qinshui basin, and it is found that it accumulated after Middle Jurassic and is characterized by staged gas accumulation, which indicates that the results of thermal simulation experiments are very important for judging the genesis of natural CBM.

       

    • loading
    • Behar, F., Vandenbroucke, M., Teermann, S.C., et al., 1995. Experimental Simulation of Gas Generation from Coals and a Marine Kerogen. Chemical Geology, 126: 247-260. doi: 10.1016/0009-2541(95)00121-2
      Clayton, J.L., 1998. Geochemistry of Coalbed Gas—A Review. International Journal of Coal Geology, 35: 159-173. doi: 10.1016/S0166-5162(97)00017-7
      Cramer, B., 2004. Methane Generation from Coal during Open System Pyrolysis Investigate by Isotope Specific. Gaussian Distributed Reaction Kinetics. Organic Geochemistry, 35(2): 379-392. doi: 10.1016/j.orggeochem.2004.01.004
      Chen, J.P., Deng, C.P., Wang, H.T., et al., 2006. Biomarker and Its Implication of Pyrolysis Oils of Macerals from Jurassic Coal Measures. Northwest China. Geochimica, 35(2): 141-150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200602004.htm
      Dai, J.X., Qi, H.F., 1989. The Relationship between δ13C and Ro in China's Coal-Formed Gas. Chinese Science Bulletin, 34(9): 690-692 (in Chinese with English abstract). doi: 10.1360/csb1989-34-9-690
      Duan, Y., Zhang, X.L., Sun, T., et al., 2011. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Herbaceous Swamp Peat at Different Thermal Maturity Stages. Chinese Science Bulletin, 56(13): 1383-1389. doi: 10.1007/s11434-011-4356-8
      Duan, Y., Sun, T., Liu, J.F., et al., 2010. Thermal Simulation Experiment and Application of Staged Evolution of Coalbed Methane Carbon Isotope. Acta Sedimentologica Sinica, 28(2): 401-404 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201002025.htm
      Duan, Y., Wu, B.X., Zheng, C.Y., et al., 2005a. Studies on Thermal Simulation of the Formation and Evolution of Coalbed Gas. Chinese Science Bulletin, 50: 40-44. doi:10.1007/BF 0318 4081
      Duan, Y., Wu, B.X., Zheng, C.Y., et al. . 2005b. Studies on Kinetics of Hydrocarbon Generation from Coals in Qinshui Basin. Chinese Science Bulletin, 50(17): 1904-1911. doi: 10.1360/04wd0114
      Kotarba, M.J., Rice, D.D., 2001. Composition and Origin of Coalbed Gases in the Lower Silesian Basin, Southwest Poland. Applied Geochem., 16: 895-910. doi: 10.1016/S0883-2927(00)00058-5
      Landais, P., 1991. Assessement of Coal Potential Evolution by Experimental Simulation of Natural Coalification. Organic Geochemistry, 17: 705-710. doi: 10.1016/0146-6380(91)90014-B
      Li, J.S., 1988. The Significance of Lignite Coalification of Pressure and Heat Simulation. Petroleum Geology and Experiment, 10(1): 72-78 (in Chinese with English abstract).
      Liu, D.M., Yang, Q., Tang, D.Z., 1997. Reaction Kinetics of Coalification in Ordos Basin. China. In: Yang, Q., ed., Geology of Fossil Fuel-Coal. The Netherlands, Utrecht, 147-159.
      Liu, Q.Y., Liu, W.H., Dai, J.X., 2007. Characterization of Pyrolysates from Maceral Components of Tarim Coals in Closed System Experiments and Implications to Natural Gas Generation. Organic Geochemistry, 38(6): 921-934. doi: 10.1016/j.orggeochem.2007.02.002
      Porada, S., 2004. The Reactions of Formation of Selected Gas Products during Coal Pyrolysis. Fuel, 83(9): 1191-1196. doi: 10.1016/j.fuel.2003.11.007
      Qin, Y., Tang, X.Y., Ye, J.P., et al., 2000. Characteristics and Origins of Stable Carbon Isotope in Coalbed Methane of China. Journal of China University of Mining & Technology, 29(2): 113-119 (in Chinese with English abstract). http://www.researchgate.net/publication/279583362_Characteristics_and_origins_of_stable_carbon_isotope_in_coal-bed_methane_of_China
      Raymond, M., Landais, P., 1994. Artificial Coalification: Comparison of Confined Pyrolysis and Hydrous Pyrolysis. Fuel, 73(11): 1691-1696. doi: 10.1016/0016-2361(94)90154-6
      Smith, J.W., Pallasser, R.J., 1996. Microbiological Origin of Australian Coalbed Methane. AAPG, 80: 891-897. doi: 10.1016/S0140-6701(97)80133-6
      Stahl, J.W., Carey, B.D., 1975. Source-Rock Identification by Isotope Analyses of Natural Gases from Fields in the Val Verde and Delaware Basins, West Texas. Chem. Geol., 16: 257-267. doi: 10.1016/0009-2541(75)90065-0
      Sang, S.X., Liu, H.J., Li, G.Z., et al., 1997. Generation and Enrichment of Coalbed Methane I: Gas Yield in Effective Stage and Concentration of Coalbed Methane. Coal Geology & Exploration, 25(6): 14-17 (in Chinese with English abstract). http://www.researchgate.net/publication/284126414_Generation_and_enrichment_of_coal_bed_methane_I_Gasyield_in_effective_stage_and_concentration_of_coal_bed_methane_in_Chinese
      Zhao, M.J., Song, Y., Su, X.B., et al., 2005. Key Geological Time of Deciding the Geochemical Characteristics of Coalbed Methane. Natural Gas Industry, 25(1): 51-54 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/trqgy200501015
      陈建平, 邓春萍, 王汇彤, 等, 2006. 中国西北侏罗纪煤系显微组分热解油生物标志物特征及其意义. 地球化学, 35(2): 141-150. doi: 10.3321/j.issn:0379-1726.2006.02.004
      戴金星, 戚厚发, 1989. 我国煤成气的δ13C-Ro关系. 科学通报, 34(9): 690-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198909013.htm
      段毅, 孙涛, 刘军峰, 等, 2010. 煤层气碳同位素阶段演化的模拟实验研究及其应用. 沉积学报, 28(2): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002025.htm
      李杰生, 1988. 褐煤煤化作用的加压加热模拟实验及其意义. 石油实验地质, 10(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198801008.htm
      秦勇, 唐修义, 叶建平, 等, 2000. 中国煤层甲烷稳定碳同位素分布与成因探讨. 中国矿业大学学报, 29 (2): 113-119. doi: 10.3321/j.issn:1000-1964.2000.02.001
      桑树勋, 刘焕杰, 李贵中, 等, 1997. 煤层气生成与煤层气富集I: 有效阶段生气量与煤层气富集. 煤田地质与勘探, 25(6): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT706.003.htm
      赵孟军, 宋岩, 苏现波, 等, 2005. 决定煤层气地球化学特征的关键地质时期. 天然气工业, 25(1): 51-54. doi: 10.3321/j.issn:1000-0976.2005.01.015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (3390) PDF downloads(465) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return