• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 1
    Jan.  2013
    Turn off MathJax
    Article Contents
    PING Hong-wei, CHEN Hong-han, Régis Thiéry, 2013. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturaiton Pressure Prediction and Volume Calibration. Earth Science, 38(1): 143-155. doi: 10.3799/dqkx.2013.014
    Citation: PING Hong-wei, CHEN Hong-han, Régis Thiéry, 2013. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturaiton Pressure Prediction and Volume Calibration. Earth Science, 38(1): 143-155. doi: 10.3799/dqkx.2013.014

    Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturaiton Pressure Prediction and Volume Calibration

    doi: 10.3799/dqkx.2013.014
    • Received Date: 2012-09-28
    • Publish Date: 2013-01-15
    • The accuracy of trapping pressure reconstruction using petroleum inclusion thermodynamic modeling is largely controlled by the accuracy of composition model and the prediction of saturation pressure and gas-liquid phase mole volume of petroleum fluid besides the measured parameters including homogenization temperature of petroleum inclusion (Th, oil), homogenization temperature of aqueous fluid inclusion (Th, aqu) and the degree of bubble filling (Fv). On condition that improving the α-β composition model, the saturation pressure predicition of α-β petroleum fluid has been improved and verified by adjusting the composition and matching the saturation pressure. The Isochore and the degree of bubble filling (Fv) of petroleum inclusion at room temperature have been improved by matching the 391 relative volume data of the constant composition expansion experiment of 22 reservoir fluids using the Peng-Robinson equation of state (EoS) under match of saturation pressure. Finally, the accuracies of trapping pressure reconstruction using the proposed method, PIT software and Vtflinc software have been evaluated by two constraining conditions for composition modeling, one is methane mole content of true petroleum fluid and the other is methane mole content from the equivalent petroleum fluid. The results show that the improved petroleum inclusions thermodynamic modeling method can effectively increase the accuracy of trapping pressure reconstruction by comparing the PIT software and Vtflinc software. Taking into consideration of the difficulty in obtaining the methane mole content of petroleum inclusion, the best recommended method to reconstruct the trapping pressure is using the composition of equivalent petroleum fluid contain the petroleum inclusions thermodynamic modeling using this method.

       

    • loading
    • Agarwal, R., Li, Y., Nghiem, L., 1990. A Regression Technique with Dynamic Parameter Selection for Phase-Behavior Matching. SPE Reservoir Engineering, 5(1): 115-120. doi: 10.2118/16343-MS
      Ahmed, T., 1989. Hydrocarbon Phase Behavior. Gulf Pub. Co., Houston.
      Ahmed, T., Cady, G., Story, A., 1985. A Generalized Correlation for Characterizing the Hydrocarbon Heavy Fraction, SPE Annual Technical Conference and Exhibition. SPE, Las Vegas, Nevada, 14266-MS. doi: 10.2118/14266-MS
      Al-Meshari, A.A., Armco, S., MaCain, W.D., 2007. Validation of Splitting the Hydrocarbon Plus Fraction: First Step in Tuning Equation-of-State, SPE Middle East Oil and Gas Show and Conference. SPE, Kingdom of Bahrain, 104631. doi: 10.2118/104631-MS
      Al-Meshari, A., 2004. New Strategic Method to Tune Equation-of-State to Match Experimental Data for Compositional Simulation, Texas A & M University, USA, 248.
      Al-Meshari, A.A., McCain, W.D., 2005. New Strategic Method to Tune Equation-of-State for Compositional Simulation, SPE Technical Symposium of Saudi Arabia Section. SPE, Dhahran, Saudi Arabia. doi: 10.2118/106332-MS
      Aplin, A.C., Macleod, G., Larter, S.R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8
      Avaullee, L., Neau, E., Jaubert, J.N., 1997. Thermodynamic Modeling for Petroleum Fluids II. Prediction of PVT Properties of Oils and Gases by Fitting One or Two Parameters to the Saturation Pressures of Reservoir fluids. Fluid Phase Equilibria, 139(1-2): 171-203. doi: 10.1016/S0378-3812(97)00170-2
      Baron, M., Parnell, J., Mark, D., et al., 2008. Evolution of Hydrocarbon Migration Style in a Fractured Reservoir Deduced from Fluid Inclusion Data, Clair Field, West of Shetland, UK. Marine and Petroleum Geology, 25(2): 153-172. doi: 10.1016/j.marpetgeo.2007.05.010
      Bourdet, J., Pironon, J., Levresse, G., et al., 2008. Petroleum Type Determination Through Homogenization Temperature and Vapour Volume Fraction Measurements in Fluid Inclusions. Geofluids, 8(1): 46-59. doi: 10.1111/j.1468-8123.2007.00204.x
      Bourdet, J., Pironon, J., Levresse, G., et al., 2010. Petroleum Accumulation and Leakage in a Deeply Buried Carbonate Reservoir, Níspero Field (Mexico). Marine and Petroleum Geology, 27(1): 126-142. doi: 10.1016/j.marpetgeo.2009.07.003
      Cavett, R., 1962. Physical Data for Distillation Calculations-Vapor-Liquid Equilibria, Proc. 27th Annual Meeting, American Petroleum Institute, Dallas, 351-366.
      Coats, K., Smart, G., 1986. Application of a Regression-Based EOS PVT Program to Laboratory Data. SPE Reservoir Engineering, 1(3): 277-299. doi: 10.2118/11197-PA
      Danesh, A., Xu, D. Todd, A., 1992. A Grouping Method to Optimize Oil Description for Compositional Simulation of Gas-Injection Processes. SPE Reservoir Engineering, 7(3): 343-348. doi: 10.2118/20745-PA
      Drohm, J.K., Goldthorpe, W.H., Trengove, R., 1988. Enhancing the Evaluation of PVT Data, Offshore South East Asia Show Singapore, 17685-MS. doi: 10.2118/17685-MS
      Elsharkawy, A.M., 2003. An Empirical Model for Estimating the Saturation Pressures of Crude Oils. Journal of Petroleum Science and Engineering, 38(1-2): 57-77. doi: 10.1016/S0920-4105(03)00035-4
      Ferket, H., Guilhaumou, N., Roure, F., et al., 2011. Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Cordoba Petroleum System (Ne Mexico). Marine and Petroleum Geology, 28(4): 936-958. doi: 10.1016/j.marpetgeo.2010.01.020
      George, S.C., Dutkiewicz, A., Volk, H., et al., 2009. Oil-Bearing Fluid Inclusions from the Palaeoproterozoic: A Review of Biogeochemical Results from Time-Capsules > 2.0 Ga Old. Science in China Series D-Earth Sciences, 52(1): 1-11. doi: 10.1007/s11430-009-0004-4
      George, S.C., Volk, H., Dutkiewicz, A., et al., 2008. Preservation of Hydrocarbons and Biomarkers in Oil Trapped Inside Fluid Inclusions for > 2 Billion Years. Geochimica et Cosmochimica Acta, 72(3): 844-870. doi: 10.1016/j.gca.2007.11.021
      Goldstein, R.H., Reynolds, T.J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals, SEM Short Course 31. Society of Sedimentary Geology (SEPM), Tulsa, 199.
      Guilhaumou, N., Dumas, P., 2005. Synchrotron FTIR Hydrocarbon Fluid Inclusion Microanalysis Applied to Diagenetic History and Fluid Flow Reconstruction in Reservoir Appraisal. Oil & Gas Science and Technology, 60(5): 763-779. doi: 10.2516/ogst:2005054
      Hoffman, A., Crump, J., Hocott, C., 1953. Equilibrium Constants for a Gas-Condensate System. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 198: 1-10.
      Hong, K., 1982. Lumped-Component Characterization of Crude Oils for Compositional Simulation, SPE Enhanced Oil Recovery Symposium. SPE, Tulsa, Oklahoma, 10691-MS. doi: 10.2118/10691-MS
      Jacopy, R.H., Berry, V.J., 1958. A Method for Predicting Pressure Maintenance for Reservoirs Producing Volatile Oil. Petroleum Transactions, Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 213: 59-65.
      Jaubert, J.N., Avaullee, L., Souvay, J.F., 2002. A Crude oil Data Bank Containing More than 5 000 PVT and Gas Injection Data. Journal of Petroleum Science and Engineering, 34(1-4): 65-107. doi: 10.1016/S0920-4105(02)00153-5
      Jaubert, J.N., Neau, E., Avaullee, L., et al., 1995. Characterization of Heavy Oils. 3. Prediction of Gas Injection Behavior: Swelling Test, Multicontact Test, Multiple-Contact Minimum Miscibility Pressure, and Multiple-Contact Minimum Miscibility Enrichment. Industrial & Engineering Chemistry Research, 34(11): 4016-4032. doi: 10.1021/ie00038a043
      Jhaveri, B., Youngren, G., 1988. Three-Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions. SPE Reservoir Engineering, 3(3): 1033-1040. doi: 10.2118/13118-PA
      Karlsen, D.A., Nedkvitne, T., Larter, S.R., et al., 1993. Hydrocarbon Composition of Authigenic Inclusions: Application to Elucidation of Petroleum Reservoir Filling History. Geochimica et Cosmochimica Acta, 57(15): 3641-3659. doi: 10.1016/0016-7037(93)90146-N
      Katz, D., 1983. Overview of Phase Behavior in Oil and Gas Production. Journal of Petroleum Technology, 35(6): 1205-1214. doi: 10.2118/9995-PA
      Katz, D., Firoozabadi, A., 1978. Predicting Phase Behavior of Condensate/Crude-Oil Systems Using Methane Interaction Coefficients. Journal of Petroleum Technology, 30(11): 1649-1655. doi: 10.2118/6721-PA
      Kay, W.B., 1936. Density of Hydrocarbon Gases and Vapors at High Temperature and Pressure. Industrial & Engineering Chemistry, 28(8): 1014-1019. doi: 10.1021/ie50321a008
      Li, Y., Nghiem, L., Siu, A., 1985. Phase Behavior Computations for Reservoir Fluids: Effect of Pseudo-Components on Phase Diagrams and Simulation Results. Journal of Canadian Petroleum Technology, 24(6): 29-36. http://www.researchgate.net/publication/250091952_Phase_Behaviour_Computations_For_Reservoir_Fluids_Effect_Of_Pseudo-Components_On_Phase_Diagrams_And_Simulation_Results
      Lisk, M., O'Brien, G.W., Eadington, P.J., 2002. Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bulletin, 86(9): 1531-1542. doi: 10.1306/61eedcec-173e-11d7-8645000102c1865d
      McCain, W.D., 1994. Heavy Components Control Reservoir Fluid Behavior. Journal of Petroleum Technology, 46: 746-750. doi: 10.2118/28214-PA
      McLimans, R.K., 1987. The Application of Fluid Inclusions to Migration of Oil and Diagenesis in Petroleum Reservoirs. Applied Geochemistry, 2(5-6): 585-603. doi: 10.1016/0883-2927(87)90011-4
      Moharam, H.M., Fahim, M.A., 1995. Prediction of Viscosity of Heavy Petroleum Fractions and Crude Oils Using a Corresponding States Method. Industrial & Engineering Chemistry Research, 34(11): 4140-4144. doi: 10.1021/ie00038a061
      Montel, F., 1993. Phase Equilibria Needs for Petroleum Exploration and Production Industry. Fluid Phase Equilibria, 84: 343-367. doi: 10.1016/0378-3812(93)85132-6
      Munz, I.A., Johansen, H., Johanse, I., 1999. Characterisation of Composition and PVT Properties of Petroleum Inclusions: Implications of Reservoir Filling and Compartmentalisation, SPE Annual Technical Conference and Exhibition. SPE, Houston, Texas, 56519-MS. doi: 10.2118/56519-MS
      Munz, I.A., Wangen, M., Girard, J.P., et al., 2004. Pressure-Temperature-Time-Composition (P-T-t-X) Constraints of Multiple Petroleum Charges in the Hild Field, Norwegian North Sea. Marine and Petroleum Geology, 21(8): 1043-1060. doi: 10.1016/j.marpetgeo.2004.05.006
      Neau, E., Jaubert, J.N., Rogalski, M., 1993. Characterization of Heavy Oils. Industrial & Engineering Chemistry Research, 32(6): 1196-1203. doi: 10.1021/ie00018a027
      Péneloux, A., Rauzy, E., Fréze, R., 1982. A Consistent Correction for Redlich-Kwong-Soave Volumes. Fluid Phase Equilibria, 8(1): 7-23. doi: 10.1016/0378-3812(82)80002-2
      Pang, L.S.K., George, S.C., Quezada, R.A., 1998. A Study of the Gross Compositions of Oil-Bearing Fluid Inclusions Using High Performance Liquid Chromatography. Organic Geochemistry, 29(5-7): 1149-1161. doi: 10.1016/S0146-6380(98)00135-1
      Parnell, J., Carey, P.F., Monson, B., 1996. Fluid Inclusion Constraints on Temperatures of Petroleum Migration from Authigenic Quartz in Bitumen Veins. Chemical Geology, 129(3-4): 217-226. doi: 10.1016/0009-2541(95)00141-7
      Pedersen, K.S., Blilie, A.L., Meisingset, K.K., 1992. PVT Calculations on Petroleum Reservoir Fluids Using Measured and Estimated Compositional Data for the Plus Fraction. Industrial & Engineering Chemistry Research, 31(5): 1378-1384. doi: 10.1021/ie00005a019
      Pedersen, K., Christensen, P., 2006. Phase Behavior of Petroleum Reservoir Fluids. CRC Press, Toylor & Francis, UK.
      Pedersen, K., Fredenslund, A., Thomassen, P., 1989. Properties of Oils and Natural Gases, Contributions in Petroleum Geology & Engineering. Gulf Pub. Co., Houston, 252.
      Pedersen, K.S., Rasmussen, P., Fredenslund, A., 1985. Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons. 3. Efficient Flash Calculation Procedures Using the SRK Equation of State. Industrial & Engineering Chemistry Process Design and Development, 24(4): 948-954. doi: 10.1021/i200031a009
      Pedersen, K., Thomassen, P., Fredenslund, A., 1988. On the Danger of Tuning Equation of Sate Parameters. Chemical Engineering Science, 43: 269-278. doi: 10.1016/0009-2509(88)85039-5
      Peng, D., Robinson, D., 1976. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Research Fundamentals, 15(1): 59-64. doi: 10.1021/i160057a011
      Ping, H.W., Thiéry, R., Chen, H.H., 2011. Thermodynamic Modelling of Petroleum Inclusions: The Prediction of the Saturation Pressure of Crude Oils. Geofluids, 11(3), doi: 10.1111/j.1468-8123.2011.00343.x
      Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012a. Contributions Degree of Petroleum Charging to Oil and Gas Accumulation and Its Significance. Earth Science—Journal of China University of Geosciences, 37(1): 163-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201201020.htm
      Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012b. Individual Oil Inclusion Composition Prediction and Its Application in the Research of Oil and Gas Accumulation. Earth Science—Journal of China University of Geosciences, 37(4): 815-824. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204021.htm
      Pironon, J., Canals, M., Dubessy, J., et al., 1998. Volumetric Reconstruction of Individual Oil Iinclusions by Confocal Scanning Laser Microscopy. European Journal of Mineralogy, 10: 1143-1150. doi: 10.1127/ejm/10/6/1143
      Pironon, J., 2004. Fluid Inclusions in Petroleum Environments: Analytical Procedure for PTX Reconstruction. Acta Petrologica Sinica, 20(6): 1333-1342. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406002.htm
      Riazi, M.R., Al-Sahhaf, T.A., 1996. Physical Properties of Heavy Petroleum Fractions and Crude Oils. Fluid Phase Equilibria, 117(1-2): 217-224. doi: 10.1016/0378-3812(95)02956-7
      Riemens, W.G., Schulte, A.M., de Jong, L.N., 1988. Birba Field PVT Variations Along the Hydrocarbon Column and Confirmatory Field Tests. Journal of Petroleum Technology, 40(1): 83-88. doi: 10.2118/13719-PA
      Rosenegger, L., Wu, R., 1999. Intergrated Oil PVT Data Characterization-Lessons from Four Case Histories. Journal of Canadian Petroleum Technology, 38(13): 97-05. http://www.researchgate.net/publication/240780849_Integrated_Oil_PVT_Characterization_-_Lessons_From_Four_Case_Histories
      Sellwood, B.W., Wilkes, M., James, B., 1993. Hydrocarbon Inclusions in Late Calcite Cements: Migration Indicators in the Great Oolite Group, Weald Basin, S. England. Sedimentary Geology, 84(1-4): 51-55. doi: 10.1016/0037-0738(93)90044-6
      Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2000. PIT (Petroleum Inclusion Thermodynamic): A New Modeling Tool for the Characterization of Hydrocarbon Fluid Inclusions from Volumetric and Microthermometric Measurements. Journal of Geochemical Exploration, 69-70: 701-704. doi: 10.1016/S0375-6742(00)00085-6
      Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002. Individual Characterization of Petroleum Fluid Inclusions (Composition and P-T Trapping Conditions) by Microthermometry and Confocal Laser Scanning Microscopy: Inferences from Applied Thermodynamics of Oils. Marine and Petroleum Geology, 19(7): 847-859. doi: 10.1016/S0264-8172(02)00110-1
      Thomassen, P., Pedersen, K.S., Fredenslund, A., 1987. Adjustment of C7+ Molecular Weights in the Characterization of Petroleum Mixtures Containing Heavy Hydrocarbons. SPE: 16036-MS.
      Tseng, H.Y., Pottorf, R.J., 2002. Fluid Inclusion Constraints on Petroleum PVT and Compositional History of the Greater Alwyn—South Brent Petroleum System, Northern North Sea. Marine and Petroleum Geology, 19(7): 797-809. doi: 10.1016/S0264-8172(02)00088-0
      Vogel, J.L., Yarborough, L., 1980. The Effect of Nitrogen on the Phase Behavior and Physical Properties of Reservoir, SPE/DOE Enhanced Oil Recovery Symposium. SPE, Tulsa, Oklahoma, 8815-MS. doi: 10.2118/8815-MS
      Wang, L.S., Gmehling, J., 1999. Improvement of SRK Equation of State for Vapor-Liquid Equilibria of Petroleum Fluids. Aiche Journal, 45(5): 1125-1134. doi: 10.1002/aic.690450519
      Whitson, C.H., 1983. Characterizing Hydrocarbon Plus Fractions. SPE, 23(4): 683-694. doi: 10.2118/12233-PA
      William, D., McCain, J., 1990. The Properties of Petroleum Fluids, 2nd ed. Pennwell Publishing Company, Tulsa.
      Williams, C.A., Zana, E.N., Humphrys, G.E., 1980. Use of the Peng-Robinson Equation of State to Predict Hydrocarbon Phase Behavior and Miscibility for Fluid Displacement, SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, Tulsa, Oklahoma. doi: 10.2118/8817-MS
      Yang, T., Chen, W.D., Guo, T.M., 1997. Phase Behavior of a Near-Critical Reservoir Fluid Mixture. Fluid Phase Equilibria, 128(1-2): 183-197. doi: 10.1016/S0378-3812(96)03163-9
      Zurita, R.A.A., William, D.M.J., 2002. An Efficient Tuning Strategy to Calibrate Cubic EoS for Compositional Simulation, SPE Annual Technical Conference and Exhibition. SPE, San Antonio, Texas, 77382. doi: 10.2118/77382-MS
      平宏伟, 陈红汉, 宋国奇, 等, 2012a. 油气充注成藏贡献度及其意义. 地球科学——中国地质大学学报, 37(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201020.htm
      平宏伟, 陈红汉, 宋国奇, 等, 2012b. 石油包裹体组分预测及其在油气成藏研究中的应用. 地球科学——中国地质大学学报, 37(4): 815-824.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(1)  / Tables(10)

      Article views (3882) PDF downloads(533) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return