• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 3
    May  2013
    Turn off MathJax
    Article Contents
    CHEN Hong-han, WU You, XIAO Qiu-gou, 2013. Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China. Earth Science, 38(3): 541-552. doi: 10.3799/dqkx.2013.054
    Citation: CHEN Hong-han, WU You, XIAO Qiu-gou, 2013. Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China. Earth Science, 38(3): 541-552. doi: 10.3799/dqkx.2013.054

    Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China

    doi: 10.3799/dqkx.2013.054
    • Received Date: 2012-05-28
    • Publish Date: 2013-05-15
    • Although many scholars have done a lot of research on the uplift mechanism of Tibet plateau, intercontinental subduction, mid-low crust flowing and magmatic activities, the thermal regime and paleogeothermal gradient evolution in the Mesozoic-Cenozoic sedimentary basins have rarely been studied. But the thermal regime and evolution of paleogeothermal gradient have great significance for the hydrocarbon generation processes and hydrocarbon preservation of the Mesozoic marine source rocks. On the basis of achievements of the previous research on the temperature field of Tibet plateau and evolution of basin types, using the fluid inclusion homogenous temperature, the paleogeothermal gradient evolution curves of the Mesozoic marine basins in Tibet plateau are formed in this paper. And it suggests that the Mesozoic marine basins in the low paleogeothermal gradient (< 3.0 ℃/100 m) when they were in the evolution process from continental margin rift basins to back-arc basins and then to foreland basins during Mesozoic to Eocene, which were beneficial for the generation of mature oil. After that these basins evolved into residual basins and the paleogeothermal gradient rising sharply (~6.5 ℃/100 m) because of continuous and periodic uplifts of the Tibet plateau during Neogene to Quaternary, which resulted in the possibility of that the oil reservoir was cracked into natural gas and secondary hydrocarbon generation of the Mesozoic marine source rocks. Therefore, the paleogeothermal gradient evolution determines the exploration potential for oil in the cooling basin and the exploration potential for gas in the heating basin.

       

    • loading
    • Alsdorf, D., Nelson, D., 1999. Tibetan Satellite Magnetic Low: Evidence for Widespread Melt in the Tibetan Crust. Geology, 27(10): 943-946. doi:10.1130/0091-7613(1999)027<0943:TSMLEF>2.3.CO;2
      Brookfield, M.E., 1993. The Himalayan Passive Margin from Precambrian to Cretaceous Times. Sedimentary Geology, 84(1-4): 1-35. doi: 10.1016/0037-0738(93)90042-4
      Chen, H.H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150 (in Chinese with English abstract). http://www.cqvip.com/QK/95357X/20072/24496620.html
      Crouzet, C., Dunkl, I., Paudel, L., et al., 2007. Temperature and Age Constraints on the Metamorphism of the Tethyan Himalaya in Central Nepal: A Multidisciplinary Approach. Journal of Asian Earth Sciences, 30: 113-130. doi: 10.1016/j.jseaes.2006.07.014
      DeCelles, P.G., Kapp, P., Ding, L., et al., 2007. Late Cretaceous to Middle Tertiary Basin Evolution in the Central Tibetan Plateau: Changing Environments in Response to Tectonic Partitioning, Aridification, and Regional Elevation Gain. Geological Society of America Bulletin, 119(5-6): 654-680. doi: 10.1130/B26074.1
      Francheteau, J., Jaupart, C., Shen, X.J., et al., 1984. High Heat Flow in Southern Tibet. Nature, 307: 32-36. doi: 10.1038/307032a0
      Fu, X.Y., 2004. Tethyan Plate Structures and Petroliferous Basins in the Qinghai-Tibet Plateau. Petroleum Geology & Expeximent, 26(6): 507-516 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200406000.htm
      Gaillard, F., Scaillet, B., Pichavant, M., 2004. Evidence for Present-Day Leucogranite Pluton Growth in Tibet. Geology, 32(9): 801-804. doi: 10.1130/G20577.1
      Gao, R.Q., Zhao, Z.Z., 2001. The Qinghai-Tibet Plateau Petroleum Geology. Petroleum Industry Press, Beijing (in Chinese).
      Hacker, B.R., Gnos, E., Ratschbacher, L., et al., 2000. Hot and Dry Deep Crustal Xenolith from Tibet. Science, 287(5462): 2463-2466. doi: 10.1126/science.287.5462.2463
      Harrison, T.M. Copeland, P., Kidd, W.S.F., et al., 1992. Raising Tibet. Science, 255(5052): 1663-1670. doi: 10.1126/science.255.5052.1663
      Horton, B.K., Yin, A., Spurlin, M.S., et al., 2002. Paleocene-Eocene Syncontractional Sedimentation in Narrow, Lacustrine-Dominated Basins of East-Central Tibet. GSA Bulletin, 114(7): 771-786. doi:10.1130/0016-7606(2002)114<0771:PESSIN>2.0.CO;2
      Huang, J.Q., Chen, B.W., 1987. The Evolution of Tethys in China and Adjacent Areas. Geological Publishing House, Beijing (in Chinese).
      Huerta, A.D., Royden, L.H., Hodges, K.V., 1996. The Interdependence of Deformational and Thermal Processes in Mountain Belts. Science, 273(5275): 637-639. doi: 10.2307/2891153
      Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596): 1219-1221. doi: 10.1126/science.1078115
      Klemperer, S.L., 2006. Crustal Flow in Tibet: Geophysical Evidence for the Physical State of Tibetan Lithosphere, and Inferred Patterns of Active Flow. In: Law, R.D., Searle, M.P., Godin, L., eds., Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London (Special Publications), 268: 39-70.
      Kosarev, G., Kind, R., Sobolev, S.V. et al., 1999. Seismic Evidence for a Detached Indian Lithospheric Mantle beneath Tibet. Science, 283(5406): 1306-1309. doi: 10.1126/science.283.5406.1306
      Lenardic, A., Moresi, L., 2000. A New Class of Equilibrium Geotherms in the Deep Thermal Lithosphere of Continents. Earth and Planetary Science Letters, 176(3-4): 331-338. doi: 10.1016/S0012-821X(00)00025-X
      Li, H.L., Qiu, N.S., Jin, Z.J., et al., 2005. Geothermal History of Tarim basin. Oil & Gas Geology, 26(5): 613-617 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200505010.htm
      Li, J.G., Batten, D.J., Zhang, Y.Y., 2008. Palynological Indications of Environmental Changes during the Late Cretaceous-Eocene on the Southern Continental Margin of Laurasia, Xizang (Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1-2): 78-86. doi: 10.1016/j.palaeo.2008.04.017
      Li, T.D., 1995. The Uplifting Process and Mechanism of the Qinghai-Tibet Plateau. Acta Geoscience Sinica, (1): 1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/291215937_The_uplifting_process_and_mechanism_of_the_Qinhai-Tibet_Plateau
      Lin, D., Kapp, P., Yue, Y.H., et al., 2007. Postcollisional Calc-Alkaline Lavas and Xenoliths from the Southern Qiangtang Terrane, Central Tibet. Earth and Planetary Science Letters, 254(1-2): 28-38. doi: 10.1016/j.epsl.2006.11.019
      Lister, C.R.B., 1996. Thermal Losses from Fluids Upwelling in a Conduit, and the Effect on Surface Heat Flow. Tectonophysics, 257(1): 39-53. doi: 10.1016/0040-1951(95)00119-0
      Liu, J.D., Zhou, W., Li, Y., et al., 2007. Analysis and Evaluation of Oil and Gas Resource Potential in the Qinghai-Tibet Region. Geological Publishing House, Beijing (in Chinese).
      Luo, J.N., Peng, Y.M., Pan, G.T., 1996. Plate Convergent Margins and Island-Arc Orogenesis in Eastern Tethys. Sedimentary Facies and Palaeogeography, 16(3): 1-51, 46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199603002.htm
      Ma, X.B., Kong, X.R., Liu, H.B., et al., 2005. The Electrical Structure of Northeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 48(3): 689-697 (in Chinese with English abstract). http://www.oalib.com/paper/1567036
      Owens, T.J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387: 37-43. doi: 10.1038/387037a0
      Pan, G.T., 1994. An Evolution of Tethys in Global Ocean-continent Transformation. Sedimentary Geology and Tethyan Geology, 18: 23-40 (in Chinese with English abstract). http://www.researchgate.net/publication/309532265_An_evolution_of_Tethys_in_global_ocean-continent_transformation
      Pan, Z.S., 1984. Curie ISO Thermal Surface and Heat Flow Analysis of the Adjacent Region of the Nianqing Tanggula Piedmont Faulted Zones. Geophysical Prospecting for Petroleum, 23(2): 38-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYWT198402002.htm
      Pandey, O.P., Agrawal, P.K., 2000. Thermal Regime, Hydrocarbon Maturation and Geodynamic Events Along the Western Margin of India since Late Cretaceous. Journal of Geodynamics, 30(4): 439-459. doi: 10.1016/S0264-3707(00)00002-8
      Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008. Gangdese Retroarc Thrust Belt and Foreland Basin Deposits in the Damxung Area, Southern Tibet. Journal of Asian Earth Sciences, 33(5-6): 323-336. doi: 10.1016/j.jseaes.2008.01.005
      Qin, J.Z., 2006. Study on Organic Matter's Maturation and Hydrocarbon-Generating History in the Qiangtang Basin. Petroleum Geology & Experiment, 28(4): 350-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200604008.htm
      Qiu, D.Z., 2004. Tibet—A New Take-over Region for Petroleum Resources of 21st Century in West China. Xinjiang Petroleum Geology, 25(3): 233-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200403000.htm
      Qiu, N.S., Kang, Y.S., Jin, Z.J., 2003. Temperature and Pressure Field in the Tertiary Succession of the Western Qaidam Basin, Northeast Qinghai-Tibet Plateau, China. Marine and Petroleum Geology, 20(5): 493-507. doi: 10.1016/S0264-8172(03)00080-1
      Royden, L.H., Burchfiel, B.C., Hilst, R.D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. doi: 10.1126/science.1155371
      Shen, X.J., Zhang, W.R., Yang, S.Z., et al., 1989. Borehole Heat Flow Measurements in Some Geo-Thermal Areas in Central Tibet. Acta Geologica Sinia, (4): 376-384 (in Chinese with English abstract). http://www.researchgate.net/publication/316929751_Borehole_heat_flow_measurements_in_some_geothermal_areas_in_central_Tibet
      Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(23): 1671-1677. doi: 10.1126/science.105978
      Ungerer, P., Pelet, R., 1987. Extrapolation the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins. Nature, 327: 52-54. doi: 10.1126/science.105978
      Wang, C.S., Yin, H.S., Li, Y., et al., 2001. Geological Evolution and Evaluation of Oil and Gas Prospects in Qiangtang Basin. Geological Publishing House, Beijing (in Chinese).
      Wang, C.S., Zhang, S.N., 1996. Preliminary Analysis of Petroliferous Basins and Oil-Gas Prospects in Qinghai-Xizang (Tibet) Plateau. Earth Science—Journal of China University of Geosciences, 21(2): 120-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199602004.htm
      Wang, F.Z., Lai, X.N., Guo, T.Y., et al., 1997. Relationship Between the Tertiary Volcanic Rocks and Oil Potential in Qiangtang Area, Tibet. Earth Science—Journal of China University of Geosciences, 22(3): 311-316 (in Chinese with English abstract).
      Wang, J., Tan, F.W., Li, Y.L., et al., 2004. Oil and Gas Resource Potential of the Key Sedimentary Basins in the Tibetan Plateau. Geological Publishing House, Beijing (in Chinese).
      Wang, J.X., Chen, Q.H., Ren, Y.J., 2003. Conditions for the Formation of Oil and Gas Pool in Cuoqin Basin. Advance in Earth Sciences, 18(2): 312-316 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkxjz200302024
      Wang, Y., Zhang, X.M., Sun, L.X., et al., 2007. Cooling History and Tectonic Exhumation Stages of the South-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology. Journal of Asian Earth Sciences, 29(2-3): 266-282. doi:10.1016/ j.jseaes.2005.11.001
      Wang, Y.C., Wang, Y.T., 2001. Characteristics and Preliminary Knowledge of Inner-Crustal Low Resistivity Zone in Qiangtang Area. Xingjiang Petroleum Geology, 22(6): 472-474 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200106006.htm
      Wei, W.B., Jin, S., Ye, G.F., et al., 2006. Conductivity Structure of Crust and Upper Mantle beneath the Northern Tibetan Plateau: Results of Super-wide Band Magnetotelluric Sounding. Chinese Journal of Geophysics, 49 (4): 1215-1225 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_dqwlxb200604038.aspx
      Wu, K.Y., Chen, Q.H., Hong, M., 1999. Main Hydrocarbon Bearing System in Tazicuo Deep Depression of the Cuoqin Basin in Qinghai. Journal of the University of Petroleum, China, 23(4): 13-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX904.003.htm
      Wu, Z.H., Jiang, W., Zhou, J.R., et al., 2001. Thermal-Chronological Dating on the Thermal History of Plutons and Tectonic-Landform Evolution of the Central Tibetan Plateau. Acta Geologica Sinia, 75(4): 468-475, 176 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200104007.htm
      Xu, H.X., Qin, J.Z., 2004. Thermal Evolution History of the Mesozoic Marine Source Rock in the Qiangtang Basin, Tibet. Petoleum Exploration and Development, 31(2): 59-63 (in Chinese with English abstract). http://www.researchgate.net/publication/291129006_Thermal_evolution_history_of_the_mesozoic_marine_source_rock_in_the_Qiangtang_Basin_Tibet
      Xu, J.R., Zhao, Z.X., Ishikawa, Yuzo., 2005. Extensional Stress Field in the Central and Southern Qinghai-Tibetan Plateau and Dynamic Mechanism of Geothermic Anomaly in the Yangbajain Area. Chinese Journal of Geophysics, 48(4): 861-869 (in Chinese with English abstract).
      Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract). http://www.researchgate.net/publication/284372537_The_Qinghai-Tibet_plateau_and_continental_dynamics_A_review_on_terrain_tectonics_collisional_orogenesis_and_processes_and_mechanisms_for_the_rise_of_the_plateau
      Yang, X.S., Ma, J., Jin, Z.M., 2003. Granite and Partial Melting of Crustal Velocity Structure in Southern Qinghai-Tibet Plateau. Acta Geologica Sinica, 24 (in Chinese).
      Yuan, C.P., Xu, S.H., 2000. Characteristics of Geotemperature Field and Maturity History of Source Rocks in Lunpola Basin, Xizang (Tibet). Experimental Petroleum Geology, 22(2): 156-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200002011.htm
      Zeng, H.S., Wang, J.Y., 2003. Assesment of Hydrocarbon Source Rocks in Xizang Gangba Basin. Natural Gas Industry, 23(6): 16-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200306004.htm
      Zhao, W.J., Liu, K., Jiang, Z.T., et al., 2004. Bangong Co-Nujiang Suture Zone, Tibet—A Suggestion Given by Deep Geophysical Structure. Regional Geology of China, 23(7): 623-635 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200407000.htm
      Zhao, Y.Q., 2008. Research on the Thermal Evolution Anomaly in Late Triassic Songpan-Aba Region. Natural Gas Technology, 2(3): 15-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRJJ200803008.htm
      陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003
      付孝悦, 2004. 青藏特提斯板块构造与含油气盆地. 石油实验地质, 26(6): 507-516. doi: 10.3969/j.issn.1001-6112.2004.06.001
      高瑞祺, 赵政璋, 2001. 青藏高原石油地质. 北京: 石油工业出版社.
      黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社.
      李慧莉, 邱楠生, 金之钧, 等, 2005. 塔里木盆地的热史. 石油与天然气地质, 26(5): 613-617. doi: 10.3321/j.issn:0253-9985.2005.05.009
      李廷栋, 1995. 青藏高原隆升的过程和机制. 地球学报, (1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm
      刘家铎, 周文, 李勇, 等, 2007. 青藏地区油气资源潜力分析与评价. 北京: 地质出版社.
      罗建宁, 彭勇民, 潘桂棠, 1996. 东特提斯板块会聚边缘与岛弧造山作用. 岩相古地理, 16(3): 1-51, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD603.000.htm
      马晓冰, 孔祥儒, 刘宏兵, 等, 2005. 青藏高原东北部地区地壳电性结构特征. 地球物理学报, 48(3): 689-697. doi: 10.3321/j.issn:0001-5733.2005.03.029
      潘桂棠, 1994. 全球洋-陆转换中的特提斯演化. 特提斯地质, 18: 23-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD400.001.htm
      潘作枢, 1984. 念青唐古拉山前断裂系周围地区的居里等温面与热流分析. 石油物探, 23(2): 38-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT198402002.htm
      秦建中, 2006. 羌塘盆地有机质热演化与成烃史研究. 石油实验地质, 28(4): 350-358. doi: 10.3969/j.issn.1001-6112.2006.04.009
      丘东洲, 2004. 西藏—我国西部21世纪新的油气资源接替区. 新疆石油地质, 25(3): 233-239. doi: 10.3969/j.issn.1001-3873.2004.03.001
      沈显杰, 张文仁, 杨淑贞, 等, 1989. 西藏中部地热区的钻孔热流测量. 地质科学, (4): 376-384. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198904009.htm
      王成善, 伊海生, 李勇, 等, 2001. 西藏羌塘盆地地质演化与油气远景评价. 北京: 地质出版社.
      王成善, 张哨楠, 1996. 青藏高原含油气盆地分析及油气资源预测. 地球科学—中国地质大学学报, 21(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199602004.htm
      王方正, 赖旭龙, 郭铁鹰, 等, 1997. 西藏羌塘地区第三系火山岩及与羌塘盆地含油性关系的研究. 地球科学—中国地质大学学报, 22(3): 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX703.014.htm
      王纪祥, 陈清华, 任拥军, 2003. 西藏措勤盆地油气成藏条件分析. 地球科学进展, 18(2): 312-316. doi: 10.3321/j.issn:1001-8166.2003.02.024
      王剑, 谭富文, 李亚林, 等, 2004. 青藏高原重点沉积盆地油气资源潜力分析. 北京: 地质出版社.
      王宜昌, 王永涛, 2001. 羌塘地区壳内低阻层特征及初步认识. 新疆石油地质, 22(6): 472-474. doi: 10.3969/j.issn.1001-3873.2001.06.006
      魏文博, 金胜, 叶高峰, 等, 2006. 藏北高原地壳及上地幔导电性结构—超宽频带大地电磁测深研究结果. 地球物理学报, 49 (4): 1215-1225. doi: 10.3321/j.issn:0001-5733.2006.04.038
      吴孔友, 陈清华, 洪梅, 1999. 青藏地区措勤盆地它日错深凹陷主含油气系统. 石油大学学报(自然科学版), 23(4): 13-15. doi: 10.3321/j.issn:1000-5870.1999.04.004
      吴珍汉, 江万, 周继荣, 等, 2001. 青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析. 地质学报, 75(4): 468-475, 176. doi: 10.3321/j.issn:0001-5717.2001.04.006
      许怀先, 秦建中, 2004. 羌塘盆地中生界海相烃源层热演化史. 石油勘探与开发, 31(2): 59-63. doi: 10.3321/j.issn:1000-0747.2004.02.016
      徐纪人, 赵志新, 石川有三, 2005. 青藏高原中南部岩石圈扩张应力场与羊八井地热异常形成机制. 地球物理学报, 48(4): 861-869. doi: 10.3321/j.issn:0001-5733.2005.04.018
      许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm
      杨晓松, 马瑾, 金振民, 等, 2003. 花岗岩部分熔融及其对青藏高原南部地壳速度结构的约束. 地质学报, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200301007.htm
      袁彩萍, 徐思煌, 2000. 西藏伦坡拉盆地地温场特征及烃源岩热演化史. 石油实验地质, 22(2): 156-160. doi: 10.3969/j.issn.1001-6112.2000.02.012
      曾华盛, 王津义, 2003. 西藏岗巴盆地烃源岩评价. 天然气工业, 23(6): 16-21. doi: 10.3321/j.issn:1000-0976.2003.06.005
      赵文津, 刘葵, 蒋忠惕, 等, 2004. 西藏班公湖-怒江缝合带—深部地球物理结构给出的启示. 地质通报, 23(7): 623-635. doi: 10.3969/j.issn.1671-2552.2004.07.001
      赵永庆, 2008. 松潘-阿坝地区晚三叠世热演化异常原因研究. 天然气技术, 2(3): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ200803008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(4)

      Article views (3469) PDF downloads(684) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return