• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 5
    Sep.  2013
    Turn off MathJax
    Article Contents
    YU Xing, CHU Feng-you, DONG Yan-hui, LI Xiao-hu, TANG Li-mei, 2013. Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading. Earth Science, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097
    Citation: YU Xing, CHU Feng-you, DONG Yan-hui, LI Xiao-hu, TANG Li-mei, 2013. Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading. Earth Science, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097

    Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading

    doi: 10.3799/dqkx.2013.097
    • Received Date: 2013-02-10
    • Publish Date: 2013-09-15
    • A new type of seafloor spreading mode has recently been well acknowledged among earth science community. It is different from normal magmatic spreading ridge. It is usually found along the slow or ultraslow spreading ridge where the segment is amagmatic or depleted in magma. The plate separation is mostly accommodated by detachment fault slipping. The low-angle large-offset detachment fault will uplift the footwall and exhume lower crust and upper mantle rocks, which is called oceanic core complex. The oceanic core complex, also named as megamullion, is often marked by corrugations and striations parallel to the extension direction. This paper presents the characteristics of this new kind of spreading mode based on in-depth argument about terminology of detachment fault and oceanic core complex. A distribution map of the known oceanic core complex has been composed. The possible methods and techniques that can be used to recognize oceanic core complexes are also discussed in this study, and so does the significance of the new findings and its influence on seafloor hydrothermal activity and mineral deposit.

       

    • loading
    • Bach, W., Rosner, M., Jöns, N., et al., 2011. Carbonate Veins Trace Seawater Circulation during Exhumation and Uplift of Mantle Rock: Results from ODP Leg 209. Earth and Planetary Science Letters, 311(3-4): 242-252. doi: 10.1016/j.epsl.2011.09.021
      Baines, A.G., Cheadle, M.J., Dick, H.J.B., et al., 2003. Mechanism for Generating the Anomalous Uplift of Oceanic Core Complexes: Atlantis Bank, Southwest Indian Ridge. Geology, 31(12): 1105-1108. doi: 10.1130/G19829.1
      Blackman, D.K., Canales, J.P., Harding, A., 2009. Geophysical Signatures of Oceanic Core Complexes. Geophysical Journal International, 178(2): 593-613. doi: 10.1111/J.1365-246X.2009.04184.X
      Blackman, D.K., Cann, J.R., Janssen, B., et al., 1998. Origin of Extensional Core Complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. J. Geophys. Res. , 103(B9): 21315-21333. doi: 10.1029/98JB01756
      Blackman, D.K., Ildefonse, B., John, B.E., et al., 2006. Oceanic Core Complex Formation, in Atlantis Massif, Vol. 304/305. Ocean Drilling Program College Station, TX.
      Blackman, D.K., Karner, G., Searle, R.C., 2008. Three-Dimensional Structure of Oceanic Core Complexes: Effects on Gravity Signature and Ridge Flank Morphology, Mid-Atlantic Ridge 30°N. Geochem. Geophys. Geosyst. , 9(6): Q06007. doi: 10.1029/2008GC001951
      Blackman, D.K., Karson, J.A., Kelley, D.S., et al., 2002. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the Evolution of an Ultramafic Oceanic Core Complex. Marine Geophysical Researches, 23(5-6): 443-469. doi: 10.1023/B:MARI.0000018232.14085.75
      Canales, J.P., Escartin, J., 2010. Detachments in Oceanic Lithosphere: Deformation, Magmatism, Fluid Flow, and Ecosystems. Chapman Conference Report, Cyprus.
      Canales, J.P., Sohn, R.A., deMartin, B.J., 2007. Crustal Structure of the Trans-Atlantic Geotraverse (TAG) Segment (Mid-Atlantic Ridge, 26°10'N): Implications for the Nature of Hydrothermal Circulation and Detachment Faulting at Slow Spreading Ridges. Geochem. Geophys. Geosyst. , 8(8): Q08004. doi: 10.1029/2007GC001629
      Canales, J.P., Tucholke, B.E., Collins, J.A., 2004. Seismic Reflection Imaging of an Oceanic Detachment Fault: Atlantis Megamullion (Mid-Atlantic Ridge, 30°10'N). Earth and Planetary Science Letters, 222(2): 543-560. doi: 10.1016/j.epsl.2004.02.023
      Canales, J.P., Tucholke, B.E., Xu, M., et al., 2008. Seismic Evidence for Large-Scale Compositional Heterogeneity of Oceanic Core Complexes. Geochem. Geophys. Geosyst. , 9(8): Q8002. doi: 10.1029/2008GC002009
      Cann, J.R., Blackman, D.K., Smith, D.K., et al., 1997. Corrugated Slip Surfaces Formed at Ridge-Transform Intersections on the Mid-Atlantic Ridge. Nature, 385(6614): 329-332. doi: 10.1038/385329a0
      Cheadle, M., Grimes, C., 2010. To Fault or not to Fault. Nature Geoscience, 3(7): 454-456. doi: 10.1038/ngeo910
      Christie, D.M., West, B.P., Pyle, D.G., et al., 1998. Chaotic topography, mantle flow and mantle migration in the Australian-Antartic discordance. Nature, 394: 637-644. doi: 10.1038/29226
      Dannowski, A., Grevemeyer, I., Ranero, C.R., et al., 2010. Seismic Structure of an Oceanic Core Complex at the Mid-Atlantic Ridge, 22°19'N. J. Geophys. Res. , 115(B7): B7106. doi: 10.1029/2009JB006943
      Davis, G.A., 1988. Rapid Upward Transport of Mid-Crustal Mylonitic Gneisses in the Footwall of a Miocene Detachment Fault, Whipple Mountains, Southeastern California. Geologische Rundschau, 77(1): 191-209. doi: 10.1007/BF0184868
      Davis, G.H., Coney, P.J., 1979. Geologic Development of the Cordilleran Metamorphic Core Complexes. Geology, 7(3): 120-124. doi:10.1130/0091-7613(1979)7<120:GDOTCM>2.0.CO;2
      Davis, G.H., Reynolds, S.J., Kluth, C.F., 1996. Structural Geology of Rocks and Regions, 2nd Edition. John Wiley and Sons Inc, New York.
      deMartin, B.J., Sohn, R.A., Canales, J.P., et al., 2007. Kinematics and Geometry of Active Detachment Faulting Beneath the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge. Geology, 35(8): 711-714. doi: 10.1130/G23718A.1
      Dick, H.J.B., Bryan, W.B., Thompson, G., 1981. Low-Angle Faulting and Steady-State Emplacement of Plutonic Rocks at Ridge-Transform Intersections: Eos, Transactions. American Geophysical Union, Washington D.C. . http://www.mendeley.com/research/lowangle-faulting-steadystate-emplacement-plutonic-rocks-ridgetransform-intersections/
      Dick, H.J.B., Natland, J.H., Alt, J.C., et al., 2000. A Long in Situ Section of the Lower Ocean Crust: Results of ODP Leg 176 Drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179(1): 31–51. doi: 10.1016/S0012-821X(00)00102-3
      Dick, H.J.B., Natland, J.H., Miller, D.J., et al., 1999. Proceedings of the Ocean Drilling Program, Initial Reports, Leg 176 Summary. ODP College Station, TX. http://epic.awi.de/965/
      Escartin, J., Cowie, P.A., Searle, R.C., et al., 1999. Quantifying Tectonic Strain and Magmatic Accretion at a Slow Spreading Ridge Segment, Mid-Atlantic Ridge, 29°N. J. Geophys. Res. , 104(B5): 10421-10437. doi: 10.1029/1998JB900097
      Escartin, J., Smith, D.K., Cann, J., et al., 2008. Central Role of Detachment Faults in Accretion of Slow-Spreading Oceanic Lithosphere. Nature, 455(7214): 790-794. doi: 10.1038/nature07333
      Fossen, H., 1992. The Role of Extensional Tectonics in the Caledonides of South Norway. Journal of Structural Geology, 14(8-9): 1033-1046. doi: 10.1016/0191-8141(92)90034-T
      Fujiwara, T., Lin, J., Matsumoto, T., et al., 2003. Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the Last 5 Ma. Geochem. Geophys. Geosyst, 4(3): 1024. doi: 10.1029/2002GC000364
      Gebelin, A., Mulch, A., Teyssier, C., et al., 2011. Oligo-Miocene Extensional Tectonics and Fluid Flow across the Northern Snake Range Detachment System, Nevada. Tectonics, 30(5): 1-18. doi: 10.1029/2010TC002797
      Hess, H.H., 1962. History of Ocean Basins. In: Engel, A.E.J., James, H.L., Leonard, B. F, eds., Petrologic Studies: A Volume in Honor of A.F. Buddington. Geological Society of America, Boulder, 599-620.
      Ildefonse, B., Blackman, D.K., John, B.E., et al., 2007. Oceanic Core Complexes and Crustal Accretion at Slow-Spreading Ridges. Geology, 35(7): 623-626. doi: 10.1130/G23531A.1
      Karson, J.A., Dick, H., 1983. Tectonics of Ridge-Transform Intersections at the Kane Fracture Zone. Marine Geophysical Research, 6(1): 51-98. doi: 10.1007/BF00300398
      Kelemen, P.B., Kikawa, E., Miller, D.J., et al., 2004. Proceedings of the ODP, Initial Reports 209. Ocean Drilling Program, College Station, TX, 1268-1275.
      Li, S.Z., Lv, H.Q., Hou, F.H., et al., 2006. Oceanic Core Complex. Marine Geology & Quaternary Geology, 26(1): 47-52(in Chinese with English abstract).
      Li, W.X., Xie, G.G., 1996. An Outline of Metamorphic Core Complex. Geology of Jiangxi, 10(2): 149-159(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXDZ602.008.htm
      Liu, D.M., Li, D.W., 2003. Detachment Faults in Dingjie Area, Middle Segment of Himalayan Orogenic Belt. Geotectonica et Metallogenia, 27(1): 37-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200301005&dbcode=CJFD&year=2003&dflag=pdfdown
      Lou, F.S., Shu, L.S., Wang, D.Z., 2005. Recent Progress in Study of Metamorphic Core Complex. Geological Journal of China Universities, 11(1): 67-76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200501004.htm
      MacLeod, C.J., Escartin, J., Banerji, D., et al., 2002. Direct Geological Evidence for Oceanic Detachment Faulting: The Mid-Atlantic Ridge, 15°45'N. Geology, 30(10): 879-882. doi:10.1130/0091-7613(2002)030<0879:DGEFOD>2.0.CO;2
      Martinez, F., Karsten, J., Klein, E.M., 1998. Recent Kinematics and Tectonics of the Chile Ridge, Eos Trans. Am. Geophys. Un. , 79(45): F836. http://ci.nii.ac.jp/naid/20000671822
      McCaig, A.M., Cliff, R.A., Escartin, J., et al., 2007. Oceanic Detachment Faults Focus Very Large Volumes of Black Smoker Fluids. Geology, 35(10), 935-938. doi: 10.1130/G23657A.1
      McCaig, A.M., Delacour A., Fallick, A.E., et al., 2010. Detachment Fault Control on Hydrothermal Circulation Systems: Interpreting the Subsurface beneath the TAG Hydrothermal Field Using the Isotopic and Geological Evolution of Oceanic Core Complexes in the Atlantic. In: Rona, P.A., Devey, C.W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D.C. .
      McKnight, A.R., 2001. Structure and Evolution of an Oceanic Megamullion on the Mid-Atlantic ridge at 27°N (Dissertation). Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge.
      Miller, E.L., Gans, P.B., 1983. The Snake Range Decollement Interpreted as a Major Extensional Shear Zone. Tectonics, 2(3): 239-263. doi: 10.1029/TC003i006p00647
      Miranda, J.M., Silva, P.F., Lourencco, N., et al., 2002. Study of the Saldanha Massif (MAR, 36°34'N): Constraints from Rock Magnetic and Geophysical Data. Mar. Geophys. Res. , 23(4), 299-318. doi: 10.1023/A:1025711502122
      Mitchell, N.C., Escartin, J., Allerton, S., 1998. Detachment Faults at Mid-Ocean Ridges Garner Interest. Eos, Trans. AGU, 79(10): 127. doi: 10.1029/98EO00095
      Morishita, T., Hara, K., Nakamura, K., et al., 2009. Igneous, Alteration and Exhumation Processes Recorded in Abyssal Peridotites and Related Fault Rocks from an Oceanic Core Complex along the Central Indian Ridge. Journal of Petrology, 50(7): 1299-1325. doi: 10.1093/petrology/egp025
      Nakamura, K., Morishita, T., Bach, W., et al., 2009. Serpentinized Troctolites Exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the Origin of the Kairei Hydrothermal Fluid Supporting a Unique Microbial Ecosystem. Earth and Planetary Science Letters, 280 (1-4): 128-136. doi: 10.1016/j.epsl.2009.01.024
      Nooner, S.L., Sasagawa, G.S., Blackman, D.K., et al., 2003. Structure of Oceanic Core Complexes: Constraints from Seafloor Gravity Measurements Made at the Atlantis Massif. Geophysical Research Letter, 30(8): 1446. doi: 10.1029/2003GL017126
      Ohara, Y., Yoshida, T., Kato, Y., et al., 2001. Giant Megamullion in the Parece Vela Backarc Basin. Marine Geophysical Research, 22(1): 47-61. doi: 10.1023/A:1004818225642
      Ohara, Y., Okino, K., Snow, J.E., 2011. Tectonics of Unusual Crustal Accretion in the Parece Vela Basin. In: Ogawa, Y., Anma, R., Dilek, Y., eds., Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin, Modern Approaches in Solid Earth Sciences. Springer, Netherlands, 8: 149-168.
      Okino, K., Matsuda, K., Christie, D.M., et al., 2004. Development of Oceanic Detachment and Asymmetric Spreading at the Australian-Antarctic Discordance. Geochem. Geophys. Geosyst. , 5(12): Q12012. doi: 10.1029/2004GC000793
      Ranero, C.R., Reston, T.J., 1999. Detachment Faulting at Ocean Core Complexes. Geology, 27(11): 983-986. doi:10.1130/0091-7613(1999)027<0983:DFAOCC>2.3.CO;2
      Ray, D., Misra, S., Banejee, R., et al., 2011. Geochemical Implications of Gabbro from the Slow-Spreading Northern Central Indian Ocean Ridge, Indian Ocean. Geological Magazine, 148(3): 404-422. doi: 10.1017/S001675681000083X
      Reston, T.J., Weinrebe, W., Grevemeyer, I., et al., 2002. A Rifted inside Corner Massif on the Mid-Atlantic Ridge at 5°S. Earth Planet. Sci. Lett. , 200(3-4): 255-269. doi: 10.1016/S0012-821X(02)00636-2
      Sauter, D., Cannat, M., Mendel, V., 2008. Magnetization of 0-26.5 Ma Seafloor at the Ultraslow-Spreading Southwest Indian Ridge 61°-67°E. Geochem. Geophys. Geosyst. , 9(4): Q04002. doi: 10.1029/2007GC001764
      Searle, R.C., Cannat, M., Fujioka, K., et al., 2003. FUJI Dome: A Large Detachment Fault near 64°E on the Very Slow-Spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. , 4(8): 9105. doi: 10.1029/2003GC000519
      Shen, L., Liu, J.L., Hu, L., et al., 2011. The Dayingzi Detachment Fault System in Liaodong Peninsula and Its Regional Tectonic Significance. Science in China (Ser. D), 41(4): 437-451 (in Chinese). http://www.springerlink.com/content/x652765040670774/
      Sichel, S.E., Esperança, S., Motoki, A., et al., 2008. Geophysical and Geochemical Evidence for Cold Upper Mantle beneath the Equatorial Atlantic Ocean. Revista Brasileira de Geofísica, 26(1): 69-86. doi. org/10.1590/S0102-261X2008000100006 doi: 10.1590/S0102-261X2008000100006
      Smith, D.K., Escartin, J., Cannat, M., et al., 2003. Spatial and Temporal Distribution of Seismicity along the Northernmid-Atlantic Ridge (15°-35°N). J. Geophys. Res. , 108(B3): 2167. doi: 10.1029/2002JB001964
      Steinfeld, R., Rhein, M., Brandt, P., et al., 2009. Oceanography, Geology and Geophysics of the South Equatorial Atlantic: Cruise No. 62, June 24-December 30, 2004, Ponta Delgada (Portugal)- Walvis Bay (Namibia). Universität Hamburg, Leitstelle Meteor/Merian.
      Tucholke, B.E., Behn, M.D., Buck, W.R., et al., 2008. Role of Melt Supply in Oceanic Detachment Faulting and Formation of Megamullions. Geology, 36(6): 455-458. doi: 10.1130/G24639A.1
      Tucholke, B.E., Lin, J., Kleinrock, M.C., 1998. Megamullions and Mullion Structure Defining Oceanic Metamorphic Core Complexes on the Mid-Atlantic Ridge. J. Geophys. Res. , 103(B5): 9857-9866. doi: 10.1029/98JB00167
      Yao, L.J., Yan, D.P., Hu, L., 2007. Structure Style and Temperature-Pressure Estimation of the Detachment Fault Zone around Fangshan Dome, Western Hills of Beijing. Earth Science— Journal of China University of Geosciences, 32(3): 357-365 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200703007.htm
      Zheng, Y.D., Zhang, Q., 1993. The Yagan Metamorphic Core Complex and Extensional Detachment Fault in Inner Mongolia. Acta Geological Sinica, 67(4): 301-309(in Chinese with English abstract). http://www.cqvip.com/QK/86253X/19942/1005047324.html
      李三忠, 吕海青, 侯方辉, 等, 2006. 海洋核杂岩. 海洋地质与第四纪地质, 26 (1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200601012.htm
      李武显, 谢国刚, 1996. 变质核杂岩概述. 江西地质, 10(2): 149-159. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ602.008.htm
      刘德民, 李德威, 2003. 喜马拉雅造山带中段定结地区拆离断层. 大地构造与成矿学, 27(1): 37-42. doi: 10.3969/j.issn.1001-1552.2003.01.005
      楼法生, 舒良树, 王德滋, 2005. 变质核杂岩研究进展. 高校地质学报, 11(1): 67-76. doi: 10.3969/j.issn.1006-7493.2005.01.005
      申亮, 刘俊来, 胡玲, 等, 2011. 辽东半岛大营子拆离断层系及其区域构造意义. 中国科学(D辑), 41(4): 437-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201104003.htm
      姚丽景, 颜丹平, 胡玲, 2007. 房山变质核杂岩基底拆离断层韧性剪切变形构造及环境分析. 地球科学——中国地质大学学报, 32(3): 357-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703007.htm
      郑亚东, 张青, 1993. 内蒙古亚干变质核杂岩与伸展拆离断层. 地质学报, 67(4): 301-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199304001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (4607) PDF downloads(376) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return