• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 5
    Sep.  2013
    Turn off MathJax
    Article Contents
    BAO Yuan, WEI Chong-tao, WANG Chao-yong, 2013. Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses. Earth Science, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101
    Citation: BAO Yuan, WEI Chong-tao, WANG Chao-yong, 2013. Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses. Earth Science, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101

    Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses

    doi: 10.3799/dqkx.2013.101
    • Received Date: 2012-08-22
    • Publish Date: 2013-09-15
    • Based on the statistic study of 324 groups of published coal type gas geochemical data from 21 basins or areas from all over the world, stratigraphic distribution, stable carbon and hydrogen isotopic composition, and spatial distribution of coal type gas in various genesis are analyzed. Multiple charts for identifying the genetic types of coal type gas are established. And the feasibility of these charts is demonstrated by an example. The results show that biogenic gases that generated from coal seam are not the same as normal biogas (compared with normal gas). The most significant difference is the δ13C(CH4) value of microbial gases lower than that of normal biogas. The stable isotopic composition of microbial gases fall within the following ranges: δ13C(CH4) < -60‰, while for thermogenic gases, δ13C(CH4) > -40‰. And for mixed gases, δ13C(CH4) ranges from -60‰ to -40‰. There is a tendency that from biogenic gases to thermogenic gases, δ13C(CH4), δ13C(CO2-CH4), δ13C(C2H6-CH4), and CH4/(C2H6+C3H8) gradually become heavier with the increase of the maturity of organic matter. An obvious positive correlation exists among aforementioned parameters. It is concluded that the charts of δ13C(CH4) and δ13C(CO2-CH4), δ13C(CH4) and δ13C(C2H6-CH4), and δ13C(CH4) and CH4/(C2H6+C3H8) are the most reliable charts for classifying the genetic type of coal type gas.

       

    • loading
    • Ahmed, M., Smith, J.W., 2001. Biogenic Methane Generation in the Degradation of Eastern Australian Permian Coals. Organic Geochemistry, 32(6): 809-816. doi: 10.1016/S0146-6380(01)00033-X
      Chen, A.D., 2002. Feature of Mixed Gas in Central Gas Field of Ordos Basin. Petroleum Exploration and Development, 29(2): 33-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200202010.htm
      Chen, R.S., 1989. Natural Gas Geology. China University of Geosciences Press, Wuhan(in Chinese).
      Dai, J.X., Pei, X.G., Qi, H.F., 1996. Natural Gas Geology in China(Part 2). Petroleum Industry Press, Beijing (in Chinese).
      Dai, J.X., Qi, H.F., Song, Y., et al., 1986. The Composition and Methane Carbon Isotopes of Coal-Bed Gases in China and Its Implications for the Origin. Science in China(Series B), 12: 1317-1326 (in Chinese). http://www.researchgate.net/publication/292378305_The_composition_and_methane_carbon_isotopes_of_coal-bed_gases_in_China_and_its_implications_for_the_origin
      Dang, H.Y., Shen, Z.M., Liu, S.B., et al., 2010. Geochemical Characteristics of Biogenetic Gas in the Baoshan Basin. Journal of Sichuan Geology, 130(1): 91-93 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SCDB201001025.htm
      Duan, Y., Zhang, X.L., Sun, T., et al., 2011. Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Herbaceous Swamp Peat at Different Thermal Maturity Stages. Science Bulletin, 56(6): 407-413 (in Chinese).
      Flores, R.M., Rice, C.A., Stricker, G.D., et al., 2008. Methanogenic Pathways of Coalbed Gas in the Powder River Basin, United States: The Geologic Factor. International Journal of Coal Geology, 76(1-2): 52-75. doi: 10.1016/j.coal.2008.02.005
      Hakan, H., Namik, Y.M., Cramer, B., et al., 2002. Isotopic and Molecular Composition of Coal-Bed Gas in the Amasra Region (Zonguldak Basin-Western Black Sea). Organic Geochemistry, 33(12): 1429-1439. doi: 10.1016/S0146-6380(02)00123-7
      He, J.Q., 2004. The Study of Generated Hydrocarbon of Shenshan Jurassic Lignite in Simulation Experiments (Dissertation). Lanzhou Institute of Geology, Chinese Academy of Science, Lanzhou (in Chinese with English abstract).
      Jia, X.L., Zhou, S.X., Song, Z.X., et al., 2008. Geochemical Characteristics of Biogenic Gas and Heavy Hydrocarbon Origin in Sanhu Region of Qaidam Basin. Natural Gas Geoscience, 19(4): 524-529 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200804015.htm
      Kotarba, M.J., 2001. Composition and Origin of Coalbed Gases in the Upper Silesian and Lublin Basins, Poland. Organic Geochemistry, 32(1): 163-180. doi: 10.1016/S0146-6380(00)00134-0
      Liu, Q.Y., 2001. The Geochemical Study of Coal-Generated Hydrocarbon in Simulated Experiment (Dissertation). Lanzhou Institute of Geology, Chinese Academy of Science, Lanzhou (in Chinese with English abstract).
      Liu, Q.Y., Dai, J.X., Li, J., et al., 2007. Geochemical Characteristics and Significance to Maturity and Sedimentary Environment of Natural Gas Hydrogen Isotopes in Tarim Basin. Science in China (Series D), 37(12): 1599-1608 (in Chinese).
      Liu, S.G., Dai, S.L., Zhao, Y.S., et al., 1998. Hydrocarbon Source Rocks and Their Natural Gas Generation Characteristics in Baoshan Basin, Yunnan Province. Natural Gas Industry, 18(1): 18-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG801.004.htm
      Liu, W.H., Chen, M.J., Guan, P., et al., 2009. Three Geochemical Tracing System and Practice of Natural Gas in Hydrocarbon Formation and Accumulation. Science Press, Beijing, 39-146 (in Chinese).
      Liu, W.H., Song, Y., Liu, Q.Y., et al., 2003. Evolution of Carbon Isotopic Composition in Pyrolytic Gases Generated from Coal and Its Main Macerals. Acta Sedimentological Sinica, 21(1): 183-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200301027.htm
      Luo, Y., Zhu, Y.M., Xue, X.L., et al., 2003. Genetic Type and Formation Mechanism of Shallow Gas in Baise Basin. Guangxi Sciences, 10(4): 286-191 (in Chinese with English abstract). http://jpkc.xsyu.edu.cn/sydz/ydwx/02/百色盆地第三系浅层气成因类型与形成机制.pdf
      Rice, D.D., 1992. Controls, Habitat, and Resource Potential of Ancient Bacterial Gas. In: Vially, R., ed., Bacterial Gas. Editons Technip, Paris, 91-120.
      Rice, D.D., 1993. Composition and Origin of Coalbed Gas. In: Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal. AAPG Studied in Geology Series, Tulsa, 38, 159-184.
      Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649-661. doi: 10.1016/0016-7037(80)90155-6
      Schoell, M., 1983. Genetic Characterization of Natural Gases. AAPG Bulletin, 67(12): 2225-2238.
      Shen, P., Wang, X.F., Xu, Y., et al., 2010. Carbon and Hydrogen Isotopic Compositions: Generation Pathway of Bacterial Gas in China. Acta Sedimentological Sinica, 28(1): 183-187 (in Chinese with English abstract).
      Shuai, Y.H., Zou, Y.R., Liu, J.Z., et al., 2005. Carbon Isotope Modeling of Coal-Derived Methane and Ethane from the Upper Paleozoic of the Ordos Basin, China. Geological Review, 51(6): 665-671 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200506010.htm
      Smith, J.W., Gould, K.W., Rigby, D., 1982. The Stable Isotope Geochemistry of Australian Coals. Organic Geochemistry, 3(4): 111-131. doi: 10.1016/0146-6380(81)90016-4
      Smith, J.W., Pallasser, R.J., 1996. Microbial Origin of Australian Coalbed Methane. AAPG Bulletin, 80(6): 891-897. http://aapgbull.geoscienceworld.org/content/80/6/891
      Tao, M.X., Shi, B.G., Li, J.Y., et al., 2007. Secondary Biological Coalbed Gas in the Xinji Area, Anhui Province, China: Evidence from the Geochemical Features and Secondary Changes. International Journal of Coal Geology, 71(2-3): 358-370. doi: 10.1016/j.coal.2006.12.002
      Tao, M.X., Wang, W.C., Xie, G.X., et al., 2005. Discovery of Secondary Biogenic Methane from Part of the Coalfield in China. Science Bulletin, 50(S1): 14-18 (in Chinese).
      Wang, D.R., Luo, H.Z., 2000. The Natural Gas and Source Rocks in Luliang Basin, Yunnan Province: A possibility of Surveying Biogas Fields in Dian-Qian-Gui Region. Natural Gas Industry, 20(3): 12-15 (in Chinese with English abstract).
      Wang, Z.S., Yu, X.M., Guo, J.Y., et al., 2010. Geochemical Characteristics and Genesis of Natural Gas in Qikou Sag. Natural Gas Geoscience, 21(4): 683-691 (in Chinese with English abstract). http://www.researchgate.net/publication/284593108_Geochemical_characteristics_and_genesis_of_natural_gas_in_Qikou_sag
      Whiticar, M.J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gas. International Journal of Coal Geology, 32(1-4): 191-215. doi: 10.1016/S0166-5162(96)00042-0
      Whiticar, M.J., Faber, E., Schoell, M., 1986. Biogenic Methane Formation in Marine and Freshwater Environments: CO2 Reduction vs. Acetate Fermentation-Isotopic Evidence. Geochimica et Cosmochimica Acta, 50(5): 693-709. doi: 10.1016/0016-7037(86)90346-7
      Xu, Y.C., Lin H.Y., Ge, D.M., 1994. Genetic Theory of Natural Gases and Its Application. Science Press, Beijing, 84-100 (in Chinese).
      Xu, Y.C., Liu, W.H., Shen, P., et al., 2005. Carbon and Hydrogen Isotopics Characteristics of Luliang and Baoshan Gas Reservoirs and Discovery of Pure Biogenic Ethane. Science in China (Ser. D), 35(8): 758-764 (in Chinese).
      Xu, Y.H., Wen, Z.G., Tang, Y.J., et al., 2005. Thermal Simulation Online Isotope Techniques in the Gas Source. Journal of Oil and Gas Technology (J. JPI), 27(6): 708-710 (in Chinese).
      Zhang, H., Cui, Y.J., Tao, M.X., et al., 2005. CBM Forming Dynamic System Evolution of Secondary Biogenic and Thermogenic Mixed in Huainan Coalfield. Science Bulletin, 50(S1): 19-26 (in Chinese). http://www.cqvip.com/QK/86894X/2005S1/4000368149.html
      Zhang, X.B., Xu, Z.Y., Duan, Y., et al., 2003. Metabolic Pathway of the Quaternary Biogenetic Gases and Their Migration and Accumulation in the Qaidam Basin, China. Geological Review, 49(2): 168-174 (in Chinese with English abstract). http://www.cqvip.com/QK/91067X/20032/7512825.html
      Zhang, X.J., Tao, M.X., Ma, J.L., et al., 2009 Characteristics of Carbon Isotope Composition from Secondary Biogenic Gas in Coalbed Gases: Taking the Huainan Coal Field as an Example. Petroleum Geology and Experiment, 31(6): 622-626 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/sysydz200906015
      Zhang, Y., Li, Z.S., Wang, D.L., et al., 2009. Geochemical Characteristics and Play Targets of Gas in Eastern Qaidam Basin, NW China. Petroleum Exploration and Development, 36(6): 693-700 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60003-1
      Zhang, Y.G., Chen, H.J., 1983. Concepts on the Generation and Accumulation of Biogenic Gas. Oil and Gas Geology, 4(2): 160-170 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT198302005.htm
      Zhao, D.S., Li, W.H., Wu, Q.Y., et al., 2006. Characteristics of Carbon Isotope and Origin of Natural Gas in Qaidam Basin. Acta Sedimentologica Sinica, 24(1): 135-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200601017.htm
      Zhao, Q.F., 2005. On the Thermal Evolution and Kinetics of Hydrocarbon Generation of Late Paleozoic Coal Measure Source Rocks in Huimin Depression (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou (in Chinese with English abstract).
      Zheng, S.G., Guo, N.F., Wang, H.X., 2000. Natural Gas Reservoirs in Jiangsu Province and Their Formation Models. Natural Gas Industry, 20(2): 8-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200002002.htm
      陈安定, 2002. 论鄂尔多斯盆地中部气田混合气的实质. 石油勘探与开发, 29(2): 33-38. doi: 10.3321/j.issn:1000-0747.2002.02.008
      陈荣书, 1989. 天然气地质学. 武汉: 中国地质大学出版社.
      戴金星, 裴锡古, 戚厚发, 1996. 中国天然气地质学(卷二). 北京: 石油工业出版社.
      戴金星, 戚厚发, 宋岩, 等, 1986. 我国煤层气组分、碳同位素类型及其成因和意义. 中国科学(B辑), 12: 1317-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198612011.htm
      党洪艳, 沈忠民, 刘四兵, 等, 2010. 保山盆地生物气地球化学特征. 四川地质学报, 130(1): 91-93. doi: 10.3969/j.issn.1006-0995.2010.01.024
      段毅, 张晓丽, 孙涛, 等, 2011. 草本沼泽泥炭不同演化阶段气体碳氢同位素组成及其演化特征. 科学通报, 56(6): 407-413. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201106007.htm
      贺建桥, 2004. 神山侏罗系褐煤生烃模拟实验研究(硕士学位论文). 兰州: 中国科学院兰州地质研究所.
      贾星亮, 周世新, 宋振响, 等, 2008. 柴达木盆地三湖地区生物气地球化学特征及重烃组分成因分析. 天然气地球科学, 19(4): 524-529. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200804015.htm
      刘全有, 2001. 煤成烃热模拟地球化学特征研究(硕士学位论文). 兰州: 中国科学院兰州地质研究所.
      刘全有, 戴金星, 李剑, 等, 2007. 塔里木盆地天然气氢同位素地球化学与对热成熟度和沉积环境的指示意义. 中国科学(D辑), 37(12): 1599-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712006.htm
      刘树根, 戴苏兰, 赵永胜, 等, 1998. 云南保山盆地烃源岩及其天然气生成特征. 天然气工业, 18(1): 18-24. doi: 10.3321/j.issn:1000-0976.1998.01.005
      刘文汇, 陈孟晋, 关平, 等, 2009. 天然气成烃成藏三元地球化学示踪体系及实践. 北京: 科学出版社, 39-146.
      刘文汇, 宋岩, 刘全有, 等, 2003. 煤岩及其主显微组份热解气碳同位素组成的演化. 沉积学报, 21(1): 183-190. doi: 10.3969/j.issn.1000-0550.2003.01.028
      罗毅, 朱扬明, 薛秀丽, 等, 2003. 百色盆地第三系浅层气成因类型与形成机制. 广西科学, 10(4): 286-191. doi: 10.3969/j.issn.1005-9164.2003.04.014
      沈平, 王晓峰, 徐茵, 等, 2010. 我国生物气藏碳、氢同位素特征、形成途径及意义. 沉积学报, 28(1): 183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001022.htm
      帅燕华, 邹艳荣, 刘金钟, 等, 2005. 煤成甲烷、乙烷碳同位素动力学研究和应用——以鄂尔多斯盆地上古生界煤成气为例. 地质论评, 51(6): 665-671. doi: 10.3321/j.issn:0371-5736.2005.06.008
      陶明信, 王万春, 解光新, 等, 2005. 中国部分煤田发现的次生生物成因煤层气. 科学通报, 50(S1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2005S1003.htm
      王大悦, 罗槐章, 2000. 云南陆良盆地天然气及烃源岩地球化学特征——兼论滇黔桂地区寻找生物气田的可能性. 天然气工业, 20(3): 12-15. doi: 10.3321/j.issn:1000-0976.2000.03.003
      王振升, 于学敏, 国建英, 等, 2010. 歧口凹陷天然气地球化学特征及成因分析. 天然气地球科学, 21(4): 683-691. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201004030.htm
      徐永昌, 林宏谕, 葛道迈, 等, 1994. 天然气成因理论及应用. 北京: 科学出版社, 84-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199504001.htm
      徐永昌, 刘文汇, 沈平, 等, 2005. 陆良、保山气藏碳、氢同位素特征及纯生物乙烷发现. 中国科学(D辑), 35(8): 758-764. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508007.htm
      徐耀辉, 文志刚, 唐友军, 等, 2005. 热模拟在线同位素技术在气源对比中的应用. 石油天然气学报(江汉石油学院学报), 27(6): 708-710. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200506009.htm
      张泓, 崔永君, 陶明信, 等, 2005. 淮南煤田次生生物成因与热成因混合型煤层气成藏动力学系统演化. 科学通报, 50(S1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2005S1004.htm
      张晓宝, 徐自远, 段毅, 等, 2003. 柴达木盆地三湖地区第四系生物气的形成途径与运聚方式. 地质论评, 49(2): 168-174. doi: 10.3321/j.issn:0371-5736.2003.02.008
      张小军, 陶明信, 马锦龙, 等, 2009. 含次生生物成因煤层气的碳同位素组成特征——以淮南煤田为例. 石油实验地质, 31(6): 622-626. doi: 10.3969/j.issn.1001-6112.2009.06.015
      张英, 李志生, 王东良, 等, 2009. 柴达木盆地东部天然气地球化学特征与勘探方向. 石油勘探与开发, 36(6): 693-700. doi: 10.3321/j.issn:1000-0747.2009.06.003
      张义刚, 陈焕疆, 1983. 论生物气的生成和聚集. 石油与天然气地质, 4(2): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198302005.htm
      赵东升, 李文厚, 吴清雅, 等, 2006. 柴达木盆地天然气的碳同位素地球化学特征及成因分析. 沉积学报, 24(1): 135-140. doi: 10.3969/j.issn.1000-0550.2006.01.018
      赵青芳, 2005. 惠民凹陷上古生界煤系源岩的热演化特征与成烃研究(硕士学位论文). 广州: 中国科学院广州地球化学研究所.
      郑绍贵, 郭念发, 王宏祥, 2000. 江苏天然气藏及成藏模式. 天然气工业, 20(2): 8-11. doi: 10.3321/j.issn:1000-0976.2000.02.003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (3912) PDF downloads(666) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return