• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 6
    Jun.  2013
    Turn off MathJax
    Article Contents
    YE Li-ming, CHU Feng-you, GE Qian, XU Dong, 2013. A Rapid Gas Hydrate Dissociation in the Northern South China Sea since the Late Younger Dryas. Earth Science, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127
    Citation: YE Li-ming, CHU Feng-you, GE Qian, XU Dong, 2013. A Rapid Gas Hydrate Dissociation in the Northern South China Sea since the Late Younger Dryas. Earth Science, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127

    A Rapid Gas Hydrate Dissociation in the Northern South China Sea since the Late Younger Dryas

    doi: 10.3799/dqkx.2013.127
    • Received Date: 2012-12-03
    • Publish Date: 2013-11-01
    • Gas hydrate in the deep sea is closely related to the global warming. One of the most important gas hydrate stability zones (GHSZ) is located in the Shenhu of the northern South China Sea (SCS). All records of carbonate content in cores ZHS-176, ZHS-174, 17940 and MD2905 reveal a carbonate minimum (CM) from 11.3-8.0 ka B.P., which is characterized with an asymmetric pattern of a rapid decrease of 9% value followed by a gradual recovery. The benthic foraminifer δ13C levels in the shells of Cibicidoides wuellerstorfi and Cibicidoides kullenbergi are depleted by 1.4‰ and 0.7‰, respectively, during the CM period. Meanwhile, the mass accumulation rate (MAR) of the organisms suddenly increased nearly twofold on the seabed. These findings indicate a likely release of a large amount of methane from the gas hydrates since the late Younger Dryas (YD). Oxidation and absorption of the methane should have lowered pH of the bottom seawater, thereby triggering a shoaling of the carbonate lysocline. Temperature increasing of the bottom seawater in the northern SCS provides a possibility to induce gas hydrates dissociation.

       

    • loading
    • Alley, R.B., 2000. The Younger Dryas Cold Interval as Viewed from Central Greenland. Quaternary Science Reviews, 19: 213-226. doi: 10.1016/S0277-3791(99)00062-1
      Alley, R.B., Meeset, A.D., Shuman, C. A, et al., 1993. Abrupt Increase in Greenland Snow Accumulation at the End of the Younger Dryas Event. Nature, 362: 527-529. doi: 10.1038/362527a0
      Archer, D., 2007. Methane Hydrate Stability and Anthropogenic Climate Change. Biogeosciences, 4: 521-544. doi: 10.5194/bg-4-521-2007
      Blunier, T., Brook, E.J., 2001. Timing of Millennial-Scale Climate Change in Antarctica and Greenland during the Last Glacial Period. Science, 291(5501): 109-112. doi: 10.1126/science.291.5501.109
      Bock, M., Schmitt, J., Moller, L., et al., 2010. Hydrogen Isotopes Preclude Marine Hydrate CH4 Emissions at the Onset of Dansgaard-Oeschger Events. Science, 328(5986): 1686-1689. doi: 10.1126/science.1187651
      Bond, G., Broecker, W., Johnsen, S., et al., 1993. Correlations between Climate Records from North Atlantic Sediments and Greenland Ice. Nature, 365: 143-147. doi: 10.1038/365143a0
      Chen, M.T., Shiau, L.J., Yu, P.S., et al., 2003.500 000-Year Records of Carbonate, Organic Carbon, and Foraminiferal Sea-Surface Temperature from the South Eastern South China Sea (near Palawan Island). Paleogeography, Palaeoclimatology, Palaeoecology, 197: 113-131. doi: 10.1016/S0031-0182(03)00389-4
      Chen, R.H., Xu, J., Meng, Y., et al., 2003. Microorganisms and Carbonate Lysocline Depth and CCD in Surface Sediment of the Northeastern South China Sea. Acta Oceanologica Sinica, 25(2): 48-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC200302005&dbcode=CJFD&year=2003&dflag=pdfdown
      Chen, Z., Yan, W., Chen, M.H., et al., 2006. Discovery of Seep Carbonate Nodules as New Evidence for Gas Venting on the Northern Continental Slope of South China Sea. Chinese Science Bulletin, 51(9): 1065-1072 (in Chinese with English abstract). doi: 10.1007/s11434-006-1065-9
      Dansgaard, W., Johnsen, S.J., Clausen, H.B., et al., 1993. Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record. Nature, 364: 218-220. doi: 10.1038/364218a0
      Dickens, G.R., 2001. The Potential Volume of Oceanic Methane Hydrates with Variable External Conditions. Organic Geochemistry, 32(10): 1179-1193. doi: 10.1016/S0146-6380(01)00086-9
      Dickens, G.R., 2003. Rethinking the Global Carbon Cycle with a Large, Dynamic and Microbially Mediated Gas Hydrate Capacitor. Earth and Planetary Science Letters, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X
      Dickens, G.R., 2011. Down the Rabbit Hole: Toward Appropriate Discussion of Methane Release from Gas Hydrate Systems during the Paleocene-Eocene Thermal Maximum and Other Past Hyper Thermal Events. Climate of the Past, 7: 831-846. doi: 10.5194/cp-7-831-2011
      EPICA Community Members, 2006. One-to-One Coupling of Glacial Climate Variability in Greenland and Antarctica. Nature, 444: 195-198. doi: 10.1038/nature05301
      Ge, Q., Meng, X.W., Chu, F.Y., et al., 2008. The Carbonate Cycles in the Northern South China Sea during the Last 30 ka and the Paleoclimatic Significance. Journal of Marine Sciences, 26(1): 18-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY200801002.htm
      Ge, Q., Wang J.S., Xiang, H., et al., 2006. Computation of Thickness of Gas Hydrate Stability Zone and Potential Volume of Gas Hydrate in South China Sea. Earth Science—Journal of China University of Geosciences, 31(2): 245-249 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200602014.htm
      Han, X., Suess, E., Huang, Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. doi: 10.1016/j.margeo.2007.11.012
      Hanebuth, T., Stattegger, K., Grootes, P.M., 2000. Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record. Science, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033
      Heaton, T.J., Blackwell, P.G., Buck, C.E., 2009. A Bayesian Approach to the Estimation of Radiocarbon Calibration Curves: The INTCAL09 Methodology. Radiocarbon, 51(4): 1151-1164. doi: 10.1017/S0033822200034214
      Huang, C.Y., Wang, C.C., Zhao, M, 1999. High-Resolution Carbonate Stratigraphy of IMAGES Core MD972151 from South China Sea. Tao, 10(1): 225-238. http://www.researchgate.net/profile/Meixun_Zhao/publication/253817100_High-resolution_Carbonate_Stratigraphy_of_IMAGES_Core_MD972151_from_South_China_Sea/links/53f821460cf24ddba7db2cf1
      Jian, Z., Wang, L., Kienast, M., et al., 1999. Benthic Foraminiferal Paleoceanography of the South China Sea over the Last 40 000 Years. Marine Geology, 156(1): 159-186. doi: 10.1016/S0025-3227(98)00177-7
      Jiang, G.Q., Shi, X.Y., Zhang, S.H., 2006. Methane Seeps, Methane Hydrate Destabilization, and the Late Neoproterozoic Postglacial Cap Carbonates. Chinese Science Bulletin, 51(10): 1152-1173. doi: 10.1007/s11434-006-1152-y
      Kennett, J.P., Cannariato, K.G., Hendy, I.L., et al., 2000. Carbon Isotopic Evidence for Methane Hydrate Instability during Quaternary Interstadials. Science, 288(5463): 128-133. doi: 10.1126/science.288.5463.128
      Kvenvolden, K.A., Lilley, M.D., Lorenson, T.D., 1993. The Beaufort Sea Continental Shelf as a Seasonal Source of Atmospheric Methane. Geophysical Research Letters, 20(22): 2459-2462. doi: 10.1029/93GL02727
      Li, L., Wang, H., Luo, B.C.R., et al., 2008. The Characterizations and Paleoceanographic Significances of Organic and Inorganic Carbon in Northern South China Sea during Past 40 ka. Marine Geology & Quaternary Geology, 28(6): 79-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200806013.htm
      Li, X.J., Jiang, M.S., 2003. Low Carbonate Event in Northern South China Sea during the Early Holocene and Their Paleoclimatic Significance. Journal of Palaeogeography, 5(3): 355-364 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200303007.htm
      Liu, J.P., Xue, Z., Ross, K., et al., 2009. Fate of Sediments Delivered to the Sea by Asian Large Rivers: Long-Distance Transport and Formation of Remote Alongshore Clinotherms. The Sedimentary Record, 7(4): 4-9. doi: 10.2110/sedred.2009.4.4
      Lutaenko, K.A., Xu, F., 2008. A Catalogue of Types of Bivalve Mollusks in the Marine Biological Museum, Chinese Academy of Sciences (Qingdao). The Bulletin of the Russian Far East Malacological Society, 12: 42-70. http://www.researchgate.net/publication/299505775_Lutaenko_KA_Xu_F_A_catalogue_of_types_of_bivalve_mollusks_in_the_Marine_Biological_Museum_Chinese_Academy_of_Sciences_Qingdao_Bulletin_of_the_Russian_Far_East_Malacological_Society_2008_v_12_pp_42-70_
      Nisbet, E, 1990. Climate Change and Methane. Nature, 347: 23. doi: 10.1038/347023a0
      Nisbet, E.G., Chappellaz, J., 2009. Shifting Gear, Quickly. Science, 324(5926): 477-478. doi: 10.1126/science.1172001
      Paull, C.K., Brewer, P.G., UsslerⅢ, W., et al., 2003. An Experiment Demonstrating that Marine Slumping is a Mechanism to Transfer Methane from Seafloor Gas-Hydrate Deposits into the Upper Ocean and Atmosphere. Geo-Marine Letters, 22(4): 198-203. doi: 10.1007/s00367-002-0113-y
      Petrenko, V.V., Smith, A.M., Brook, E.J., et al., 2009. 14CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources. Science, 324(5926): 506-508. doi: 10.1126/science.1168909
      Schrag, D.P., Hampt, G., Murray, D.W., 1996. Pore Fluid Constraints on the Temperature and Oxygen Isotopic Composition of the Glacial Ocean. Science, 272(5270): 1930-1932. doi: 10.1126/science.272.5270.1930
      Severinghaus, J.P., Sowers, T., Brook, E.J., et al., 1998. Timing of Abrupt Climate Change at the End of the Younger Dryas Interval from Thermally Fractionated Gases in Polar Ice. Nature, 391: 141-146. doi: 10.1038/34346
      Sowers, T., 2006. Late Quaternary Atmospheric CH4 Isotope Record Suggests Marine Clatherates are Stable. Science, 311(5762): 838-840. doi: 10.1126/science.1121235
      Su, X., 2004. Marine Gas Hydrates Distribution and Dynamic System of Gas-Water-Sediment. Science in China (Series D), 34(12): 1091-1099 (in Chinese with English abstract).
      Suess, E., 2005. FS Sonne Fahrtbericht/Cruise Report SO177, Siger 2004, Sino-German Cooperative Project, South China Sea Continental Margin: Geological Methane Budget and Environmental Effects of Methane Emissions and Gas Hydrates. In: IFM-GEOMAR Reports. Earth & Environmental Science, Wolfvile.
      Villasante-Marcos, V., Hollis, C.J., Dickens, G.R., et al., 2009. Rock Magnetic Properties across the Paleocene-Eocene Thermal Maximum in Marlborough, New Zealand. Geologica Acta, 7(1-2): 229-242. doi: 10.1344/105.000000280
      Voris, H.K., 2000. Maps of Pleistocene Sea Levels in Southeast Asia: Shorelines, River Systems and Time Durations. Journal of Biogeography, 27(5): 1153-1167. doi: 10.1046/j.1365-2699.2000.00489.x
      Walker, J.C.G., Kasting, J.F., 1992. Effects of Fuel and Forest Conservation on Future Levels of Atmospheric Carbon Dioxide. Palaeogeography, Palaeoclimatology, Palaeoecology, 97: 151-189. doi: 10.1016/0031-0182(92)90207-L
      Wang, L., Jian, Z., Chen, J., 1997. Late Quaternary Pteropods in the South China Sea: Carbonate Preservation and Paleoenvironmental Variation. Marine Micropaleontology, 32(1-2): 115-126. doi: 10.1016/S0377-8398(97)00016-9
      Wang, L., Sarnthein, M., Erlenkeuser, H., et al., 1999. East Asian Monsoon Climate during the Late Pleistocene: High-Resolution Sediment Records from the South China Sea. Marine Geology, 156: 245-284. doi: 10.1016/S0025-3227(98)00182-0
      Wu, N., Dong, H., Suess, E., 2006. Mineralogical Features and C-O Isotope Composition of Methane-Derived Carbonate Build-up Found in the Northeastern South China Sea. Western Pacific Geophysics Meeting, EOS Transactions, AGU Abstract (87), Hawaii, OS41F-01.
      Yancheva, G., Nowaczyk, N.R., Mingram, J., et al., 2007. Influence of the Intertropical Convergence Zone on the East Asian Monsoon. Nature, 445: 74-77. doi: 10.1038/nature05431
      Yang, T., Jiang, S.Y., Ge, L., et al., 2010. Geochemical Characteristics of Pore Water in Shallow Sediments from Shenhu Area of South China Sea and Their Significance for Gas Hydrate Occurrence. Chinese Science Bulletin, 54(20): 3231-3240 (in Chinese with English abstract).
      Yang, W.G., Zheng, H.B., Xie, X., et al., 2008. East Asian Summer Monsoon Maximum Records in Northern South China Sea during the Early Holocene. Quaternary Sciences, 28(3): 425-430 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200803006.htm
      Yuan, D., Cheng, H., Edwards, R.L., et al., 2004. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science, 304(5670): 575-578. doi: 10.1126/science.1091220
      Zachos, J.C., Rohl, U., Schellenberg, S.A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611-1615. doi: 10.1126/science.1109004
      Zhang, H., Yang, S., Wu, N., et al., 2007. China's First Gas Hydrate Expedition Successful. Methane Hydrate Newsletter, 7(2): 1.
      Zhao, M., Huang, C.Y., Wang, C.C., et al., 2006. A Millennial-Scale U37k Sea-Surface Temperature Record from the South China Sea (8°N) over the Last 150 kyr: Monsoon and Sea-Level Influence. Palaeogeography, Palaeoclimatology, Palaeoecology, 236: 39-55. doi: 10.1016/j.palaeo.2005.11.033
      Zhou, B., Zheng, H.B., Yang, W.G., et al., 2008. Provenance and Paleo-Environment Changes in the Northern Part of South China Sea since the Last Glacial Period as Recorded by Organic Geochemistry Proxies. Quaternary Sciences, 28(3): 407-416 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dsjyj200803004.aspx
      陈荣华, 徐建, 孟翊, 等, 2003. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度. 海洋学报, 25(2): 48-56. doi: 10.3321/j.issn:0253-4193.2003.02.006
      陈忠, 颜文, 陈木宏, 等, 2006. 南海北部大陆坡冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据. 科学通报, 51(9): 1065-1072. doi: 10.3321/j.issn:0023-074X.2006.09.011
      葛倩, 孟宪伟, 初凤友, 等, 2008. 近3万年来南海北部碳酸盐旋回及古气候意义. 海洋学研究, 26(1): 18-21. doi: 10.3969/j.issn.1001-909X.2008.01.003
      葛倩, 王家生, 向华, 等, 2006. 南海天然水合物稳定带厚度及资源量估算. 地球科学——中国地质大学学报, 31(2): 245-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602014.htm
      李丽, 王慧, 罗布次仁, 等, 2008. 南海北部4万年以来有机碳和碳酸盐含量变化及古海洋学意义. 海洋地质与第四纪地质, 28(6): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200806013.htm
      李学杰, 江茂生, 2003. 南海北部全新世早期低钙事件及其古气候解释. 古地理学报, 5(3): 355-364. doi: 10.3969/j.issn.1671-1505.2003.03.008
      苏新, 2004. 海洋天然气水合物分布与"气-水-沉积物"动态体系. 中国科学(D辑), 34(12): 1091-1099. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200412000.htm
      杨涛, 蒋少涌, 葛璐, 等, 2009. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义. 科学通报, 54(20): 3231-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200920038.htm
      杨文光, 郑洪波, 谢昕, 等, 2008. 南海北部陆坡沉积记录的全新世早期夏季风极强事件. 第四纪研究, 28(3): 425-430. doi: 10.3321/j.issn:1001-7410.2008.03.006
      周斌, 郑洪波, 杨文光, 等, 2008. 末次冰期以来南海北部物源及古环境变化的有机地球化学记录. 第四纪研究, 28(3): 407-416. doi: 10.3321/j.issn:1001-7410.2008.03.004
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(1)

      Article views (10302) PDF downloads(1602) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return