• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 2
    Feb.  2014
    Turn off MathJax
    Article Contents
    Liu Xiting, Yan Jiaxin, Ma Zhixin, Xue Wuqiang, 2014. Origination of Limestone-Marl Alternations from Qixia Formation of South China. Earth Science, 39(2): 155-164. doi: 10.3799/dqkx.2014.015
    Citation: Liu Xiting, Yan Jiaxin, Ma Zhixin, Xue Wuqiang, 2014. Origination of Limestone-Marl Alternations from Qixia Formation of South China. Earth Science, 39(2): 155-164. doi: 10.3799/dqkx.2014.015

    Origination of Limestone-Marl Alternations from Qixia Formation of South China

    doi: 10.3799/dqkx.2014.015
    • Received Date: 2013-09-02
    • Publish Date: 2014-02-01
    • The Middle Permian of South China is a unique carbonate succession, which is rich in organic matter and chert nodule, and is one set of the most important marine source rocks. Limestone-marl alternations are widely distributed in this area. The limestones are rich in skeletal detritus, dominated by algae, foraminifera, and mollusks with subordinate amounts of brachiopods, echinoderms, and ostracods, and minor bryozoans and trilobites. Fragile skeletons such as calcareous algae were well preserved, indicating that cementation took place during early diagenesis with little diagenetic compaction. Marls are bioclastic wackestone or dark mudstone. Bioclasts are diverse, including remnants of brachiopods, ostracods and rare trilobites. Bioclastic flakes are oriented parallel to bedding planes, and thin-shelled fragments, e.g., ostracods, are broken due to compaction of the unlithified sediment. Between the particles are micrite and a large number of dissolution seams. As to the particular features of the limestone-marl alternations, it is inferred that differential diagenesis occurred between limestones and marls. Aragonite in marl layers was dissolved to cement limestone, which took place in shallow-burial realm. Mechanical compaction and then pressure dissolution were concentrated in the less cemented strata. The dissolution of aragonite in the shallow marine burial realm is thought to have been initiated by modification of the pore-water chemistry by bacterial oxidation of organic matter.

       

    • loading
    • Bao, H.Y., Ma, Z.W., Hu, C.Y., et al., 2009. Productivity of Limestone-Marl Rhythms of Permain Chihsia Formation in Wuhan. Geological Science and Technology Information, 28(2): 60-65(in Chinese with English abstract).
      Bathurst, R.G.C., 1987. Diagenetically Enhanced Bedding in Argillaceous Platform Limestones: Stratified Cementation and Selective Compaction. Sedimentology, 34(5): 749-778. doi: 10.1111/j.1365-3091.1987.tb00801.x
      Chen, H., Xie, X.N., Li, H.J., et al., 2010. Evaluation of the Permian Marine Hydrocarbon Source Rocks at Shangsi Section in Sichuan Province Using Multi-proxies of Paleoproductivity and Paleoredox. Journal of Palaeogeography, 12(3): 324-333(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201003011.htm
      Dickson, J.A.D., 2002. Fossil Echinoderms as Monitor of the Mg/Ca Ratio of Phanerozoic Oceans. Science, 298(5596): 1222-1224. doi: 10.1126/science.1075882
      Du, Y.L., Li, S.Y., Jia, Z.H., et al., 2012. Re-discussion on the Origin of the Rudstone in Middle Permian Qixia Formation along Lower Yangtze River of Anhui Province. Geological Review, 58(3): 426-433(in Chinese with English abstract).
      Feng, Z.Z., Yan, Y.Q., Jin, Z.K., et al., 1996. Lithofacies Paleogeography of the Permian of South China. Acta Sedimentologica Sinica, 14(2): 1-11(in Chinese with English abstract).
      Folk, R.L., 1974. The Natural History of Crystalline Calcium Carbonate: Effect of Magnesium Content and Salinity. Journal of Sedimentary Research, 44(1): 40-53. doi: 10.1306/74D72973-2B21-11D7-8648000102C1865D
      Hardie, L.A., 1996. Secular Variation in Seawater Chemistry: An Explanation for the Coupled Secular Variation in the Mineralogies of Marine Limestones and Potash Evaporites over the Past 600 M. y. Geology, 24(3): 279-283. doi:10.1130/0091-7613(1996)024<0279:Svisca>2.3.Co;2
      Horita, J., Friedman, T.J., Lazar, B., et al., 1991. The Composition of Permian Seawater. Geochimica et Cosmochimica Acta, 55(2): 417-432. doi: 10.1016/0016-7037(91)90001-L
      Jin, Z.K., Feng, Z.Z., 1994. The Origin of the Permian Nodular Limestones in Yunnan-Guizhou Region. Acta Petrologica et Mineralogica, 13(2): 133-137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW402.004.htm
      Li, S.Y., Meng, Q.R., Wan, Q., et al., 2008. Deposition of Carbonate Slope and Ore-Forming in Permian Strata in the Middle-Lower Reaches of the Yangtze River, East China. Acta Petrologica Sinica, 24(8): 1733-1744(in Chinese with English abstract).
      Liang, D.G., Guo, T.L., Bian, L.Z., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. Marine Origin Petroleum Geology, 14(2): 1-19(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200902003.htm
      Liu, X.T., Yan, J.X., 2009. A Review of Influences of Seawater Chemical Evolution on Biomineralization. Journal of Palaeogeography, 11(4): 446-454(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GDLX200904011.htm
      Liu, X.T., Yan, J.X., Xue, W.Q., 2011. Differential Diagenesis of Limestone-Marl Alternations. Geological Review, 58(4): 627-635(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201204003.htm
      Liu, X.Y., Yan, J.X., 2007. Nodular Chert of the Permian Chihsia Formation from South China and Its Geological Implications. Acta Sedimentologica Sinica, 25(5): 730-736(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200705010.htm
      Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., et al., 2001. Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions. Science, 294(5544): 1086-1088. doi: 10.1126/science.1064280
      Lowenstein, T.K., Timofeeff, M.N., Kovalevych, V.M., et al., 2005. The Major-Ion Composition of Permian Seawater. Geochimica et Cosmochimica Acta, 69(7): 1701-1719. doi: 10.1016/j.gca.2004.09.015
      Luo, J.X., He, Y.B., 2010. Origin and Characteristics of Permian Eyeball-Shaped Limestones in Middle-Upper Yangtze Region. Geological Review, 56(5): 629-637(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201005005.htm
      Ma, Z.X., Li, B., Yan, J.X., et al., 2011. Microfacies of Peloidal Limestone of Middle Permian Chihsia Formation at Guangyuan, Sichuan Province and Its Sedimentary Significance. Acta Sedimentologica Sinica, 29(3): 449-457(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201103006.htm
      Milliman, J.D., Freile, D., Steinen, R.P., et al., 1993. Great Bahama Bank Aragonitic Muds, Mostly Inorganically Precipitated, Mostly Exported. Journal of Sedimentary Research, 63(4): 589-595. doi: 10.1306/D4267B81-2B26-11D7-8648000102C1865D
      Munnecke, A., Westphal, H., Kolbl-Ebert, M., 2008. Diagenesis of Plattenkalk: Examples from the Solnhofen Area (Upper Jurassic, Southern Germany). Sedimentology, 55(6): 1931-1946. doi: 10.1111/j.1365-3091.2008.00975.x
      Munnecke, A., Westphal, H., Reijmer, J.J.G., et al., 1997. Microspar Development during Early Marine Burial Diagenesis: A Comparison of Pliocene Carbonates from the Bahamas with Silurian Limestones from Gotland (Sweden). Sedimentology, 44(6): 977-990. doi: 10.1111/j.1365-3091.1997.tb02173.x
      Murchey, B.L., Jones, D.L., 1992. A Mid-Permian Chert Event: Widespread Deposition of Biogenic Siliceous Sediments in Coastal, Island Arc and Oceanic Basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 96(1-2): 161-174. doi: 10.1016/0031-0182(92)90066-E
      Ricken, W., 1987. The Carbonate Compaction Law: A New Tool. Sedimentology, 34(4): 571-584. doi: 10.1111/j.1365-3091.1987.tb00787.x
      Ries, J.B., 2010. Review: Geological and Experimental Evidence for Secular Variation in Seawater Mg/Ca (Calcite-Aragonite Seas) and Its Effects on Marine Biological Calcification. Biogeosciences, 7(9): 2795-2849. doi: 10.5194/bg-7-2795-2010
      Ries, J.B., Anderson, M.A., Hill, R.T., 2008. Seawater Mg/Ca Controls Polymorph Mineralogy of Microbial CaCO3: A Potential Proxy for Calcite-Aragonite Seas in Precambrian Time. Geobiology, 6(2): 106-119. doi: 10.1111/j.1472-4669.2007.00134.x
      Sandberg, P.A., 1983. An Oscillating Trend in Phanerozoic Non-Skeletal Carbonate Mineralogy. Nature, 305(5929): 19-22. doi: 10.1038/305019a0
      Sanders, D., 2003. Syndepositional Dissolution of Calcium Carbonate in Neritic Carbonate Environments: Geological Recognition, Processes, Potential Significance. Journal of African Earth Sciences, 36(3): 99-134. doi: 10.1016/S0899-5362(03)00027-7
      Stanley, S.M., 2008. Effects of Global Seawater Chemistry on Biomineralization: Past, Present, and Future. Chemical Reviews, 108(11): 4483-4498. doi: 10.1021/cr800233u
      Stanley, S.M., Hardie, L.A., 1998. Secular Oscillations in the Carbonate Mineralogy of Reef-Building and Sediment-Producing Organisms Driven by Tectonically Forced Shifts in Seawater Chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1): 3-19. doi: 10.1016/S0031-0182(98)00109-6
      Wang, C.S., Li, X.H., Chen, H.D., et al., 1999. Permian Sea-Level Changes and Rising-Falling Events in South China. Acta Sedimentologica Sinica, 17(4): 536-541(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199904004.htm
      Westphal, H., 2006. Limestone-Marl Alternations as Environmental Archives and the Role of Early Diagenesis: A Critical Review. International Journal of Earth Sciences, 95(6): 947-961. doi: 10.1007/s00531-006-0084-8
      Westphal, H., Head, M.J., Munnecke, A., 2000. Differential Diagenesis of Rhythmic Limestone Alternations Supported by Palynological Evidence. Journal of Sedimentary Research, 70(3): 715-725. doi: 10.1306/2DC40932-0E47-11D7-8643000102C1865D
      Westphal, H., Hilgen, F., Munnecke, A., 2010. An Assessment of the Suitability of Individual Rhythmic Carbonate Successions for Astrochronological Application. Earth-Science Reviews, 99(1): 19-30. doi: 10.1016/j.earscirev.2010.02.001
      Westphal, H., Munnecke, A., 1997. Mechanical Compaction versus Early Cementation in Fine-Grained Limestones: Differentiation by the Preservation of Organic Microfossils. Sedimentary Geology, 112(1-2): 33-42. doi: 10.1016/S0037-0738(97)00033-X
      Wheeley, J.R., Cherns, L., Wright, P., 2008. Provenance of Microcrystalline Carbonate Cement in Limestone-Marl Alternations (LMA): Aragonite Mud or Molluscs? Journal of the Geological Society, 165: 395-403. doi: 10.1144/0016-76492006-160
      Yan, J.X., 2004. Origin of Permian Chihsian Carbonates from South China and Its Geological Implications. Acta Sedimentologica Sinica, 22(4): 579-587(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200404004.htm
      Yan, J.X., Munnecke, A., Steuber, T., et al., 2005. Marine Sepiolite in Middle Permian Carbonates of South China: Implications for Secular Variation of Phanerozoic Seawater Chemistry. Journal of Sedimentary Research, 75(3): 328-338. doi: 10.2110/Jsr.2005.026
      Yan, J.X., Wu, M., 2006. Synchronized Osciliations in Phanerozoic Chemical Composition of Seawater, Carbonate Sedimentation and Biotic Evolution: Progresses and Prospects. Geological Science and Technology Information, 25(3): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200603000.htm
      Yang, Y.Q., Feng, Z.Z., 2000. Permian Depositional Systems in South China. Journal of Palaeogeography, 2(1): 11-18(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GDLX200001001&dbcode=CJFD&year=2000&dflag=pdfdown
      Yin, H.F., Xie, S.C., Yan, J.X., et al., 2011. Geobiological Approach to Evaluating Marine Carbonate Source Rocks of Hydrocarbon. Sci. China: Earth Sci. , 54(8): 1121-1135. doi: 10.1007/s11430-011-4236-8
      Zhuravlev, A.Y., Wood, R.A., 2009. Controls on Carbonate Skeletal Mineralogy: Global CO2 Evolution and Mass Extinctions. Geology, 37(12): 1123-1126. doi: 10.1130/G30204A.1
      包汉勇, 马仲武, 胡超涌, 等, 2009. 武汉地区二叠系栖霞组灰岩-含泥灰岩韵律层生物产率. 地质科技情报, 28(2): 60-65. doi: 10.3969/j.issn.1000-7849.2009.02.011
      陈慧, 解习农, 李红敬, 等, 2010. 利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩. 古地理学报, 12(3): 324-333. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201003011.htm
      杜叶龙, 李双应, 贾志海, 等, 2012. 再论安徽沿江地区中二叠统栖霞组砾屑灰岩的成因. 地质论评, 58(3): 426-433. doi: 10.3969/j.issn.0371-5736.2012.03.003
      冯增昭, 杨玉卿, 金振奎, 等, 1996. 中国南方二叠纪岩相古地理. 沉积学报, 14(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB602.000.htm
      金振奎, 冯增昭, 1994. 云贵地区二叠系瘤石灰岩的成因. 岩石矿物学杂志, 13(2): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW402.004.htm
      李双应, 孟庆任, 万秋, 等, 2008. 长江中下游地区二叠纪碳酸盐斜坡沉积及其成矿意义. 岩石学报, 24(8): 1733-1744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808007.htm
      梁狄刚, 郭彤楼, 边立曾, 等, 2009. 中国南方海相生烃成藏研究的若干新进展(三) : 南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001
      刘喜停, 颜佳新, 2009. 海水化学演化对生物矿化的影响综述. 古地理学报, 11(4): 446-454. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200904011.htm
      刘喜停, 颜佳新, 薛武强, 2012. 灰岩-泥灰岩韵律层的差异成岩作用. 地质论评, 58(4): 627-635. doi: 10.3969/j.issn.0371-5736.2012.04.003
      刘新宇, 颜佳新, 2007. 华南地区二叠纪栖霞组燧石结核成因研究及其地质意义. 沉积学报, 25(5): 730-736. doi: 10.3969/j.issn.1000-0550.2007.05.011
      罗进雄, 何幼斌, 2010. 中-上扬子地区二叠系眼球状石灰岩特征及成因研究. 地质论评, 56(5): 629-637. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201005005.htm
      马志鑫, 李波, 颜佳新, 等, 2011. 四川广元中二叠统栖霞组似球粒灰岩微相特征及沉积学意义. 沉积学报, 29(3): 449-457. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201103006.htm
      王成善, 李祥辉, 陈洪德, 等, 1999. 中国南方二叠纪海平面变化及升降事件. 沉积学报, 17(4): 536-541. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904004.htm
      颜佳新, 2004. 华南地区二叠纪栖霞组碳酸盐岩成因研究及其地质意义. 沉积学报, 22(4): 579-587. doi: 10.3969/j.issn.1000-0550.2004.04.005
      颜佳新, 伍明, 2006. 显生宙海水成分, 碳酸盐沉积和生物演化系统研究进展. 地质科技情报, 25(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200603000.htm
      杨玉卿, 冯增昭, 2000. 中国南方二叠纪沉积体系. 古地理学报, 2(1): 11-18. doi: 10.3969/j.issn.1671-1505.2000.01.002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (3830) PDF downloads(457) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return