Citation: | Zhao Huaiyan, Gong Airong, Yin Hui, Liu Fan, Tan Wenfeng, Qiu Guohong, Feng Xionghan, 2014. Substructural Transformation of Birnessite and Formation of Todorokite in Simulated Surface Environment. Earth Science, 39(2): 227-239. doi: 10.3799/dqkx.2014.022 |
Bargar, J.R., Fuller, C.C., Marcus, M.A., et al., 2009. Structural Characterization of Terrestrial Microbial Mn Oxides from Pinal Creek, AZ. Geochimica et Cosmochimica Acta, 73: 889-910. doi: 10.1016/j.gca.2008.10.036
|
Bish, D.L., Post, J.E., 1989. Thermal Behavior of Complex, Tunnel-Structure Manganese Oxides. American Mineralogist, 74: 177-186. http://www.researchgate.net/publication/236552007_Thermal_behavior_of_complex_tunnel-structure_manganese_oxides
|
Bodeï, S., Manceau, A., Geoffroy, N., et al., 2007. Formation of Todorokite from Vernadite in Ni-Rich Hemipelagic Sediments. Geochimica et Cosmochimica Acta, 71: 5698-5716. doi: 10.1016/j.gca.2007.07.020
|
Buatier, M.D., Guillaume, D., Wheat, C.G., et al., 2004. Mineralogical Characterization and Genesis of Hydrothermal Mn Oxides from the Flank of the Juan, the Fuca Ridge. American Mineralogist, 89: 1807-1815. doi: 10.2138/am-2004-11-1227
|
Cai, J., Liu, J., Suib, S.L., 2002. Preparative Parameters and Framework Dopant Effects in the Synthesis of Layer-Structure Birnessite by Air Oxidation. Chemistry of Materials, 14: 2071-2077. doi: 10.1021/cm010771h
|
Chukhrov, F.V., Drits, V.A., Gorshkov, A.I., et al., 1987. Structural Models of Vernadite. International Geology Review, 29: 1337-1347. doi: 10.1080/00206818709466228
|
Drits, V.A., Silvester, E., Gorshkov, A.I., et al., 1997. Structure of Synthetic Monoclinic Na-Rich Birnessite and Hexagonal Birnessite: I. Results from X-Ray Diffraction and Selected-Area Electron Diffraction. American Mineralogist, 82: 946-961. doi: 10.2138/am-1997-9-1012
|
Drits, V.A., Lanson, B., Gaillot, A.C., 2007. Birnessite Polytype Systematics and Identification by Powder X-Ray Diffraction. American Mineralogist, 92: 771-788. doi: 10.2138/am.2007.2207
|
Fendorf, S.E., Sparks, D.L., Franz, J.A., et al., 1993. Electron Paramagnetic Resonance Stopped-Flow Kinetic Study of Manganese (Ⅱ) Sorption-Desorption on Birnessite. Soil Science Society of America Journal, 57: 57-62. doi: 10.2136/sssaj1993.03615995005700010011x
|
Feng, X.H., Liu, F., Tan, W.F., et al., 2004a. Synthesis of Todorokite by Refluxing Process and Its Primary Characteristics. Science in China(Ser. D), 47: 760-768. doi: 10.1360/03yd0511
|
Feng, X.H., Tan, W.F., Liu, F., et al., 2004b. Synthesis of Todorokite at Atmospheric Pressure. Chemistry of Materials, 16: 4330-4336. doi: 10.1021/cm0499545
|
Feng, X.H., Tan, W.F., Liu, F., et al., 2005. Hydrothermal Synthesis of Todorokite and Its Influencing Factors. Earth Science—Journal of China University of Geosciences, 30(3): 347-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200503011.htm
|
Feng, X.H., Zhu, M.Q., Ginder-Vogel, M., et al., 2010. Formation of Nano-Crystalline Todorokite from Biogenic Mn Oxides. Geochimica et Cosmochimica Acta, 74: 3232-3245. doi: 10.1016/j.gca.2010.03.005
|
Giovanoli, R., 1980. Vernadite is Random-Stacked Birnessite. Mineralium Deposita, 15: 251-253.
|
Golden, D.C., Chen, C.C., Dixon, J.B., 1987. Transformation of Birnessite to Buserite, Todorokite and Manganite under Mild Hydrothermal Treatment. Clays and Clay Minerals, 35: 271-280. doi: 10.1346/CCMN.1987.0350404
|
Grangeon, S., Lanson, B., Miyata, N., et al., 2010. Structure of Nanocrystalline Phyllomanganates Produced by Freshwater Fungi. American Mineralogist, 95: 1608-1616. doi: 10.2138/am.2010.3516
|
Jiang, X.J., Yao, D., Lin, X.H., 2009. Role of Sodium Ion on Stability of the Crystal Structure of Marine 10 Å Manganates. Earth Science —Journal of China University of Geosciences, 34(3): 392-398 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.043
|
Kijima, N., Yasuda, H., Sato, T., et al., 2001. Preparation and Characterization of Open Tunnel Oxide α-MnO2 Precipitated by Ozone Oxidation. Journal of Solid State Chemistry, 159(1): 94-102. doi: 10.1006/jssc.2001.9136
|
Lanson, B., Drits, V.A., Silvester, E., et al., 2000. Structure of H-Exchanged Hexagonal Birnessite and Its Mechanism of Formation from Na-Rich Monoclinic Buserite at Low pH. American Mineralogist, 85: 826-838. doi: 10.2138/am-2000-5-625
|
McKenzie, R.M., 1971. The Synthesis of Birnessite, Cryptomelane and Some Other Oxides and Hydroxides of Manganese. Mineralogical Magazine, 38: 493-502. doi: 10.1180/minmag.1971.038.296.12
|
McKenzie, R.M., 1989. Manganese Oxides and Hydroxides. In: Dixon, J.B., Weed, S.B., eds., Minerals in Soil Environments (2nd Edition). Soil Science Society of America, Madison, Wisconsin, 439-465.
|
Post, J.E., 1999. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proceeding of the National Academy of Sciences of the United of America, 96: 3447-3454. doi: 10.1073/pnas.96.7.3447
|
Potter, R.M., Rossman, G.R., 1979. The Tetravalent Manganese Oxides: Identification, Hydration, and Structural Relationships by Infrared Spectroscopy. American Mineralogist, 64: 1199-1218. http://ammin.geoscienceworld.org/content/64/11-12/1199
|
Qian, J.C., 1998. Study on Structural Stability of 1 nm Manganates. Acta Oceanologica Sinica, 20(3): 56-63 (in Chinese with English abstract).
|
Saratovsky, I., Gurr, S.J., Hayward, M.A., 2009. The Structure of Manganese Oxide Formed by the Fungus Acremonium sp. Strain KR21-2. Geochimica et Cosmochimica Acta, 73: 3291-3300. doi: 10.1016/j.gca.2009.03.005
|
Shen, Y.F., Zerger, R.P., Suib, S.L., et al., 1993. Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization and Application. Science, 260: 511-515. doi: 10.1126/science.260.5107.511
|
Takematsu, N., Khaben, H., Saton, Y., et al., 1988. Todorokite Formation in Seawater by Microbial Mediation. Journal of the Oceanographic Society of Japan, 44: 235-243. doi: 10.1007/BF02303427
|
Tan, W.F., Liu, F., Li, Y.H., et al., 2000. Methodological Study of Identifying Manganese Minerals in Fe-Mn Nodules of Soils. Acta Mineralogica Sinica, 20(1): 63-67 (in Chinese with English abstract).
|
Tebo, B.M., Bargar, J.R., Clement, B.G., et al., 2004. Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Annual Review of Earth and Planetary Sciences, 32: 287-328. doi: 10.1146/annurev.earth.32.101802.120213
|
Toyoda, K., Tebo, B.M., 2013. The Effect of Ca2+ Ions and Ionic Strength on Mn(Ⅱ) Oxidation by Spores of the Marine Bacillus sp. SG-1. Geochimica et Cosmochimica Acta, 101: 1-11. doi: 10.1016/j.gca.2012.10.008
|
Tu, S.H., Racz, G.J., Goh, T.B., 1994. Transformations of Synthetic Birnessite as Affected by pH and Manganese Concentration. Clays and Clay Minerals, 42(3): 321-330. doi: 10.1346/CCMN.1994.0420310
|
Villalobos, M., Lanson, B., Manceau, A., et al., 2006. Structural Model for the Biogenic Mn Oxide Produced by Pseudomonas Putida. American Mineralogist, 91: 489-502. doi: 10.2138/am.2006.1925
|
Villalobos, M., Toner, B., Bargar, J., et al., 2003. Characterization of the Mn Oxide Produced by Pseudomonas Putida Strain MnB1. Geochimica et Cosmochimica Acta, 67: 2649-2662. doi: 10.1016/S0016-7037(03)00217-5
|
Wadsley, A.D., 1950. Synthesis of Some Hydrated Manganese Minerals. American Mineralogist, 35: 485-488.
|
Webb, S.M., Dick, G.J., Bargar, J.R., et al., 2005a. Evidence for the Presence of Mn(Ⅲ) Intermediates in the Bacterial Oxidation of Mn(Ⅱ). Proceeding of the National Academy of Sciences of the United of America, 102: 5558-5563. doi: 10.1073/pnas.0409119102
|
Webb, S.M., Tebo, B.M., Bargar, J.R., 2005b. Structural Characterization of Biogenic Mn Oxides Produced in Seawater by the Marine Bacillus sp. Strain SG-1. American Mineralogist, 90: 1342-1357. doi: 10.2138/am.2005.1669
|
Yang, D.S., Wang, M.K., 2002. Syntheses and Characterization of Birnessite by Oxidizing Pyrochroite in Alkaline Conditions. Clays and Clay Minerals, 50: 63-69. doi: 10.1346/000986002761002685
|
Yin, H., Tan, W.F., Zheng, L.R., et al., 2012. Characterization of Ni-Rich Hexagonal Birnessite and Its Geochemical Effects on Aqueous Pb2+/Zn2+ and As(Ⅲ). Geochimica et Cosmochimica Acta, 93: 47-62. doi. org/10.1016/j. gca. 2012.05.039 doi: 10.1016/j.gca.2012.05.039
|
Zhu, M.Q., Matthew, G.V., Sanjai, J.P., et al., 2010. Cation Effects on the Layer Structure of Biogenic Mn-Oxides. Environmental Science Technology, 44: 4465-4471. doi: 10.1021/es1009955
|
冯雄汉, 谭文峰, 刘凡, 等, 2005. 热液条件下钙锰矿的合成及其影响因素. 地球科学——中国地质大学学报, 30(3): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503011.htm
|
姜学钧, 姚德, 林学辉, 2009. 钠离子对于海洋成因10 Å水锰矿结构稳定性的影响. 地球科学——中国地质大学学报, 34(3): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903001.htm
|
钱江初, 1998.1 nm锰矿相结构稳定性的研究. 海洋学报, 20(3): 56-63. doi: 10.3321/j.issn:0253-4193.1998.03.009
|
谭文峰, 刘凡, 李永华, 等, 2000. 土壤铁锰结核中锰矿物类型鉴定的探讨. 矿物学报, 20(1): 63-67. doi: 10.3321/j.issn:1000-4734.2000.01.012
|