• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 3
    Mar.  2014
    Turn off MathJax
    Article Contents
    Tu Junbiao, Fan Daidu, Shang Shuai, Chen Lingling, Zhang Yue, 2014. Evolution and Sedimentary Sequence of Tidal Channel-Flat System at Bore-Affected Reach of the Qiantang Estuary. Earth Science, 39(3): 261-270. doi: 10.3799/dqkx.2014.025
    Citation: Tu Junbiao, Fan Daidu, Shang Shuai, Chen Lingling, Zhang Yue, 2014. Evolution and Sedimentary Sequence of Tidal Channel-Flat System at Bore-Affected Reach of the Qiantang Estuary. Earth Science, 39(3): 261-270. doi: 10.3799/dqkx.2014.025

    Evolution and Sedimentary Sequence of Tidal Channel-Flat System at Bore-Affected Reach of the Qiantang Estuary

    doi: 10.3799/dqkx.2014.025
    • Received Date: 2013-09-26
    • Publish Date: 2014-03-15
    • Sedimentary features of tidal-bore deposits, evolution and resultant sedimentary sequence of main channel and tidal flat in the Qiantang Estuary are studied in detail by analyses of time-series satellite photos, and sedimentological and geochemical characters of a 4 m high crop. The wide and shallow channel at the bore-affected reach shifts rapidly under intense interaction of tidal flow and river runoff. There is channel evolution cycle of ~20 years linked to the decadal alterations of dry and wet periods in the catchment. On the vertical facies association of tidal channel-flat system, the lower section is a typical tidal-bore deposit at the main channel and the lower tidal flat, characterized by thick massive sandy beds with well developed soft-sediment deformation structures. The upper section is tidal rhythmite at the higher tidal flat, typical of mud couplets and spring-neap tidal cycles of tidal origin. The middle tidal-flat facies bears both sedimentary features of tidal-bore deposits and tidal rhythmite. C-M diagram and probability cumulative curve are useful to differentiate tidal-bore deposits from tidal sandy/muddy deposits. There is a general trend of higher ratios of Si/Al, Zr/Al and Ti/Al in tidal-bore deposits, and Fe/Al and Mn/Al in tidal rhythmites, which is mainly related to elemental behavior and selected sorting of hydrodynamic. Elements of Si, Zr and Ti majorly present in quartz and heavy minerals are therefore abundant in the higher energy depositional environment, while Fe, Mn elements which can be easily adsorbed by clay minerals are consequently enriched in the lower energy sedimentary environment.

       

    • loading
    • Bertrand, S., Hughen, K.A., Sepulvda, J., et al., 2012. Geochemistry of Surface Sediments from the Fjords of Northern Chilean Patagonia (44-47): Spatial Variability and Implications for Paleoclimate Reconstructions. Geochimica et Cosmochimica Acta, 76: 125-146. doi: 10.1016/j.gca.2011.10.028
      Carrey, E., Taillefert, M., 2005. The Role of Soluble Fe (Ⅲ) in the Cycling of Iron and Sulfur in the Coastal Marine Sediments. Limnology and Oceanography, 50(4): 1129-1141. doi: 10.4319/lo.2005.50.4.1129
      Chanson, H., 2009. Current Knowledge in Hydraulic Jumps and Related Phenomena: A Survey of Experimental Results. European Journal of Mechanics B/Fluids, 28(2): 191-210. doi: 10.1016/j.euromechflu.2008.06.004
      Chanson, H., Lubin, P., Simon, B., et al., 2010. Turbulence and Sediment Processes in the Tidal Bore of the Garonne River: First Observation. School of Civil Engineering, The University of Queensland, Brisbane.
      Chen, J.Y., Luo, Z.D., Chen, D.C., et al., 1964. Formation and Evolution History of the Big Sand Bar within Qiantangjiang Estuary. Acta Geographica Sinica, 30(2): 109-123 (in Chinese with Russian abstract).
      Dalrymple, R.W., Mackay, D.A., Ichaso, A.A., et al., 2012. Processes, Morphodynamics, and Facies of Tide-Dominated Estuaries. In: Davis, R.A.J., Dalrymple, R.W., eds., Principles of Tidal Sedimentology. Springer, London, 79-107.
      Fan, D.D., Cai, G.F., Shang, S., et al., 2012. Sedimentation Processes and Sedimentary Characteristics of Tidal Bores along the North Bank of the Qiantang Estuary. Chinese Science Bulletin, 57(13): 1578-1589. doi: 10.1007/s11434-012-4993-6
      Feng, Y.J., Li, Y., Xie, Q.C., et al., 1990. Activity of Geomorphology and Deposit Interface in Hangzhou Bay. Acta Oceanologica Sinica, 12(2): 213-223 (in Chinese).
      Greb, S.F., Archer, A.W., 2007. Soft-Sediment Deformation Produced by Tides in a Meizoseismic Area, Turnagain Arm, Alaska. Geology, 35(5): 435-438. doi: 10.1130/G23209A.1
      Guo, Y.X., Fan, D.D., Zhao, J., 2004. Grain-Size Characteristics and Their Applications to the Intertidal Subfacies Division: A Case Study from Andong Tidal Flats in the Hangzhou Bay. Marine Geology Letters, 20(5): 9-14 (in Chinese with English abstract). http://www.researchgate.net/publication/290992475_Grain-size_characteristics_and_their_applications_to_the_intertidal_subfacies_division_A_case_study_from_Andong_tidal_flat_in_the_Hangzhou_Bay
      Kolditz, K., Dellwig, O., Barkowski, J., et al., 2012. Geochemistry of Holocene Salt Marsh and Tidal Flat Sediments on a Barrier Island in the Southern North Sea (Langeoog, North-West Germany). Sedimentology, 59(2): 337-355. doi: 10.1111/j.1365-3091.2011.01252.x
      Lin, B.Y., 2008. Characteristics of the Tidal Bore in Qiantangjiang Estuary. Chinese Ocean Press, Beijing (in Chinese).
      Martinez, N.C., Murray, R.W., Dickens, G.R., et al., 2009. Discrimination of Sources of Terrigenous Sediments Deposited in the Central Arctic Ocean during the Cenozoic. Paleoceanography, 24(1): PA1210. doi: 10.1029/2007PA001567
      Martinius, A.W., Gowland, S., 2011. Tide-Influenced Fluvial Bedforms and Tidal Bore Deposits (Late Jurassic Lourinhâ Formation, Lusitanian Basin, Western Portugal). Sedimentology, 58(1): 285-324. doi: 10.1111/j.1365-3091.2010.01185.x
      Millwarda, G.E., Rowleya, C., Sandsa, T.K., et al., 1999. Metals in the Sediments and Mussels of the Chupa Estuary (White Sea) Russia. Estuarine, Coastal and Shelf Science, 48(1): 13-25. doi: 10.1006/ecss.1999.0400
      Murray, N.J., Phinn, S.R., Clemens, R.S., et al., 2012. Continental Scale Mapping of Tidal Flats across East Asia Using the Landsat Archive. Remote Sensing, 4(11): 3417-3426. doi: 10.3390/rs4113417
      Pan, F., Lin, C.M., Li, Y.L., et al., 2011. Sediments Grain-Size Characteristics and Environmental Evolution of Core SE2 in Southern Bank of Qiantang River since the Late Quaternary. Journal of Palaeogeography, 13(2): 236-244 (in Chinese with English abstract). http://www.researchgate.net/publication/309456859_Sediments_grain-size_characteristics_and_environmental_evolution_of_core_SE2_in_southern_bank_of_Qiantang_River_since_the_late_quaternary
      Passega, R., 1964. Grain Size Representation by CM Patterns as a Geologic Tool. Journal of Sedimentary Research, 34(4): 830-847. doi: 10.1306/74D711A4-2B21-11D7-8648000102C1865D
      Phinn, S.R., Menges, C., Hill, G.J.E., et al., 2000. Optimizing Remotely Sensed Solutions for Monitoring, Modeling, and Managing Coastal Environments. Remote Sens. Environ., 73(2): 117-132. doi: org/ 10.1016/S0034-4257(00)00087-0
      Qian, N., Xie, H.X., Zhou, Z.D., et al., 1964. The Fluvial Processes of the Big Sand Bar inside the Chien Tary Chiry Estuary. Acta Geographica Sinica, 30(2): 124-142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB196402003.htm
      Ryu, J., Won, J., Min, K.D., 2002. Waterline Extraction from Landsat TM Data in a Tidal Flat: A Case Study in Gomso Bay, Korea. Remote Sensing of Environment, 83(3): 442-456. doi: org/ 10.1016/S0034-4257(02)00059-7
      Schnetger, B., Brumsack, H.J., Schale, H., et al., 2000. Geochemical Characteristics of Deep-Sea Sediments from the Arabian Sea: A High-Resolution Study. Deep-Sea Research Part Ⅱ—Topical Studies in Oceanography, 47(14): 2735-2768. doi: org/ 10.1016/S0967-0645(00)00047-3
      Sun, Y.B., Wu, F., Clemens, S.C., et al., 2008. Processes Controlling the Geochemical Composition of the South China Sea Sediments during the Last Climatic Cycle. Chemical Geology, 257(3-4): 240-246. doi: org/ 10.1016/j.chemgeo.2008.10.002
      Tessier, B., Terwindt, J.H.H., 1994. An Example of Soft-Sediment Deformations in an Intertidal Environment: The Effect of Tidal Bore. C. R. Acad. Sci. Paris, 319: 217-223 (in French with English abstract). http://www.researchgate.net/publication/279603689_An_example_of_soft_sediment_deformations_in_an_intertidal_environment_the_effect_of_a_tidal_boreUn_exemple_de_deformations_synsedimentaires_en_milieu_intertidal_l'effect_du_mascaret
      Visher, G.S., 1969. Grain Size Distributions and Depositional Processes. Journal of Sedimentary Research, 39(3): 1075-1106. doi: 10.1306/74D71D9D-2B21-11D7-8648000102C1865D
      Wang, A.J., Gao, S., Jia, J.J., 2006. Calibration for Intertidal Flat Sediment Core Shortening: A Case Study from Wanggang, Jiangsu Coast. Acta Sedimentologica Sinica, 24(4): 555-561 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/cjxb200604013
      Yu, Q., Wang, Y.W., Gao, S., et al., 2012. Modeling the Formation of a Sand Bar within a Large Funnel-Shaped, Tide-Dominated Estuary: Qiantangjiang Estuary, China. Marine Geology, 299-302: 63-76. doi: org/ 10.1016/j.margeo.2011.12.008
      Zeng, J., Sun, Z.L., Pan, C.H., et al., 2010. Long-Periodic Feature of Runoff and Its Effect on Riverbed in Qiantang Estuary. Journal of Zhejiang University (Engineering Science), 44(8): 1584-1588 (in Chinese with English abstract). http://www.researchgate.net/publication/286960652_Long-periodic_feature_of_runoff_and_its_effect_on_riverbed_in_Qiantang_estuary
      Zhang, G.J., Li, C.X., 1996. The Fills and Stratigraphic Sequences in the Qiantangjiang Incised Paleovalley, China. Journal of Sedimentary Research, 66(2): 406-414. doi: 10.1306/D426835B-2B26-11D7-8648000102C1865D
      陈吉余, 罗祖德, 陈德昌, 等, 1964. 钱塘江河口沙坎的形成及其历史演变. 地理学报, 30(2): 109-123. doi: 10.3321/j.issn:0375-5444.1964.02.003
      冯应俊, 李炎, 谢钦春, 等, 1990. 杭州湾地貌及沉积界面的活动性. 海洋学报(中文版), 12(2): 213-223.
      郭艳霞, 范代读, 赵娟, 2004. 潮坪层序的粒度特征与沉积相划分——以杭州湾庵东浅滩为例. 海洋地质动态, 20(5): 9-14. doi: 10.3969/j.issn.1009-2722.2004.05.003
      林炳尧, 2008. 钱塘江涌潮的特性. 北京: 海洋出版社.
      潘峰, 林春明, 李艳丽, 等, 2011. 钱塘江南岸SE2孔晚第四纪以来沉积物粒度特征及环境演化. 古地理学报, 13(2): 236-244.
      钱宁, 谢汉祥, 周志德, 等, 1964. 钱塘江河口沙坎的近代过程. 地理学报, 30(2): 124-142. doi: 10.3321/j.issn:0375-5444.1964.02.004
      王爱军, 高抒, 贾建军, 2006. 江苏王港潮间带柱状样的压缩和校正. 沉积学报, 24(4): 555-561. doi: 10.3969/j.issn.1000-0550.2006.04.013
      曾剑, 孙志林, 潘存鸿, 等, 2010. 钱塘江河口径流长周期特性及其对河床的影响. 浙江大学报(工学版), 44(8): 1584-1588.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (14466) PDF downloads(2710) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return