• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 3
    Mar.  2014
    Turn off MathJax
    Article Contents
    Li Jun, Sun Zhilei, Huang Wei, Cui Ruyong, 2014. Modern Seafloor Hydrothermal Processes and Mineralization. Earth Science, 39(3): 312-324. doi: 10.3799/dqkx.2014.030
    Citation: Li Jun, Sun Zhilei, Huang Wei, Cui Ruyong, 2014. Modern Seafloor Hydrothermal Processes and Mineralization. Earth Science, 39(3): 312-324. doi: 10.3799/dqkx.2014.030

    Modern Seafloor Hydrothermal Processes and Mineralization

    doi: 10.3799/dqkx.2014.030
    • Received Date: 2013-07-09
    • Publish Date: 2014-03-15
    • The composition of hot fluids that exit at vent fields reflects a number of factors including the initial seawater composition, the composition and structure of host rock, and the characteristics (depth, size, and shape) of heat source. Meanwhile, the addition of magmatic volatiles in various tectonic environments may affect fluid compositions. Two main types of hydrothermal deposits, including metal sulfide chimneys formed by high temperature fluid and the metalliferous sediments derived from hydrothermal plumes, diffuse flows and the mass wasting of preformed metal sulfides, may form when the vent flow rises from seafloor. The formation of sulfide chimneys is dominated by the mixing ratios of seawaters and hydrothermal fluids, and generally features with a typical two-stage-model. During stage 1, vent fluid mixes turbulently with seawater, resulting in precipitation of a ring of anhydrite. While in stage 2, the copper-iron, and iron sulfides begin to precipitate and plate the inner chimney wall. This model can also be observed on a larger scale, such as in TAG hydrothermal mounds. The biological processes are believed to play a key role in the hydrothermal mineralization including the formation and alteration of chimneys and diffusion of plumes. Nowadays, much attention is concentrated on the exploration and mineralization of Lost City field and ultraslow-spreading ridges. The researches of the first two issues may deepen the understandings of the early earth and life evolution, and the researches of the last one may enrich the mineralization theory and facilitate investigations of larger scale sulfide deposits.

       

    • loading
    • Allen, D.E., Seyfried Jr, W.E., 2004. Serpentinization and Heat Generation: Constraints from Lost City and Rainbow Hydrothermal Systems. Geochimica et Cosmochimica Acta, 68(6): 1347-1354. doi: 10.1016/j.gca.2003.09.003
      Alt, J.C., 1995. Subseafloor Processes in Mid-Ocean Ridge Hydrothermal Systems. In: Humphris, S.E., Zierenherg, R.A., Mullineaux, L.S., et al., eds., Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. AGU, Monograph Series, 91: 85-114.
      Alt, J.C., Lanord, C.F., Floyd, P.A., et al., 1992. Low Temperature Hydrothermal Alteration of Jurassic Ocean Crust, Site 801. Proceedings of the Ocean Drilling Program, Scientific Results, 129: 415-427. http://www.researchgate.net/publication/235687674_Low-Temperature_Hydrothermal_Alteration_of_Jurassic_Ocean_Crust_Site_801
      Bach, W., Banerjee, N.R., Dick, H.J.B., et al., 2002. Discovery of Ancient and Active Hydrothermal Systems along the Ultra-Slow Spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 3(7): 1-14. doi: 10.1029/2001GC000279
      Baker, E.T., Edmonds, H.N., Michael, P.J., et al., 2004. Hydrothermal Venting in Magma Deserts the Ultraslow-Spreading Gakkel and Southwest Indian Ridges. Geochemistry, Geophysics, Geosystems, 5(8): Q08002. doi: 10.1029/2004GC000712
      Berndt, M.E., Seyfried, W.E., Janecky, D.R., 1989. Plagioclase and Epidote Buffering of Cation Ratios in Mid-Ocean Ridge Hydrothermal Fluids: Experimental Results in and near the Supercritical Region. Geochimica et Cosmochimica Acta, 53(9): 2283-2300. doi: 10.1016/0016-7037(89)90351-7
      Böstrom, K., Peterson, M.N.A., 1969. The Origin of Aluminium-Poor Ferromanganoan Sediments in Areas of High Heat Flow on the East Pacific Rise. Marine Geology, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4
      Botz, R., Winckler, G., Bayer, R., et al., 1999. Origin of Trace Gases in Submarine Hydrothermal Vents of the Kolbeinsey Ridge, North Iceland. Earth and Planetary Science Letters, 171(1): 83-93. doi: 10.1016/S0012-821X(99)00128-4
      Bradley, A.S., Hayes, J.M., Summons, R.E., 2009. Extraordinary 13C Enrichment of Diether Lipids at the Lost City Hydrothermal Field Indicates a Carbon-Limited Ecosystem. Geochimica et Cosmochimica Acta, 73(1): 102-118. doi: 10.1016/j.gca.2008.10.005
      Bradley, A.S., Summons, R.E., 2010. Multiple Origins of Methane at the Lost City Hydrothermal Field. Earth and Planetary Science Letters, 297(1-2): 34-41. doi: 10.1016/j.epsl.2010.05.034
      Charlou, J.L., Donval, J.P., Fouquet, Y., et al., 2002. Geochemistry of High H2 and CH4 Vent Fluids Issuing from Ultramafic Rocks at the Rainbow Hydrothermal Field (36°4′N, MAR). Chemical Geology, 191(4): 345-359. doi: 10.1016/S0009-2541(02)00134-1
      Chavagnac, V., Palmer, M.R., Milton, A., et al., 2006. Hydrothermal Sediments as a Potential Record of Seawater Nd Isotope Compositions: The Rainbow Vent Site (36°14′N, Mid-Atlantic Ridge). Paleoceanography, 21: PA3012. doi: 10.1029/2006PA001273
      Connelly, D.P., German, C.R., 2002. Total Dissolvable Manganese Anomalies over the Knipovich Ridge: Evidence for Hydrothermal Activity. EOS Transactions American Geophysical Union, 83(Supp. 4): OS205-206. http://eprints.soton.ac.uk/2214/
      Cousens, B.L., Blenkinsop, J., Franklin, J.M., 2002. Lead Isotope Systematics of Sulfide Minerals in the Middle Valley Hydrothermal Systems, Northern Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 3(5): 1-16. doi: 10.1029/2001GC000257
      Dekov, V.M., Kamenov, G.D., Savelli, C., et al., 2009. Metalliferous Sediments from Eolo Seamount (Tyrrhenian Sea): Hydrothermal Deposition and Re-Deposition in a Zone of Oxygen Depletion. Chemical Geology, 264(1-4): 347-363. doi: 10.1016/j.chemgeo.2009.03.023
      Delacour, A., Früh-Green, G.L., Bernasconi, S.M., et al., 2008. Carbon Geochemistry of Serpentinites in the Lost City Hydrothermal System (30°N, MAR). Geochimica et Cosmochimica Acta, 72(15): 3681-3702. doi: 10.1016/j.gca.2008.04.039
      Dias, Á. S., Barriga, F.J.A.S., 2006. Mineralogy and Geochemistry of Hydrothermal Sediments from the Serpentinite-Hosted Saldanha Hydrothermal Field (36°34′N; 33°26′W) at MAR. Marine Geology, 225(1-4): 157-175. doi: 10.1016/j.margeo.2005.07.013
      Dick, G.J., Andersson, A.F., Baker, B.J., et al., 2009. Community-Wide Analysis of Microbial Genome Signatures. Genome Biology, 10: R85. doi: 10.1186/gb-2009-10-8-r85.
      Dick, J.B., Lin, J., Schouten, H., 2003. An Ultraslow-Spreading Class of Ocean Ridge. Nature, 426: 405-412. doi: 10.1038/nature02128
      Douville, E., Bienvenu, P., Charlou, J.L., et al., 1999. Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica et Cosmochimica Acta, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1
      Duhig, N.C., Stolz, J., Davidson, G.J., et al., 1992. Cambrian Microbial and Silica Gel Textures in Silica Iron Exhalites from the Mount Windsor Volcanic Belt, Australia: Their Petrography, Chemistry, and Origin. Economic Geology, 87(3): 764-784. doi: 10.2113/gsecongeo.87.3.764
      Edmonds, H.N., Michael, P.J., Baker, E.T., et al., 2003. Discovery of Abundant Hydrothermal Venting on the Ultraslow-Spreading Gakkel Ridge in the Arctic Ocean. Nature, 421: 252-256. doi: 10.1038/nature01351