• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 3
    Mar.  2014
    Turn off MathJax
    Article Contents
    Wang Songjie, Wang Lu, Fu Jianmin, Ding Yue, 2014. A New Perspective for Research of Dabie-Sulu Ultrahigh-Pressure Metamorphic Rocks: Application of Optical Microscope-Based Cathodoluminescence. Earth Science, 39(3): 357-367. doi: 10.3799/dqkx.2014.034
    Citation: Wang Songjie, Wang Lu, Fu Jianmin, Ding Yue, 2014. A New Perspective for Research of Dabie-Sulu Ultrahigh-Pressure Metamorphic Rocks: Application of Optical Microscope-Based Cathodoluminescence. Earth Science, 39(3): 357-367. doi: 10.3799/dqkx.2014.034

    A New Perspective for Research of Dabie-Sulu Ultrahigh-Pressure Metamorphic Rocks: Application of Optical Microscope-Based Cathodoluminescence

    doi: 10.3799/dqkx.2014.034
    • Received Date: 2013-08-21
    • Publish Date: 2014-03-15
    • With the use of optical microscope-based cathodoluminescence (OM-CL), many kinds of growth textures of minerals can be observed, which are either indiscernable or to be omitted easily with other routine analytical methods. OM-CL is an effective pre-research technique prior to other follow-up component analysis, which can provide important information for reconstructing formation and evolution processes of minerals. This technique has wide-spread applications in international petromineralogy, oil and gas reservoir and mineral deposits, but is relatively weak in metamorphic rocks. The applications of OM-CL in the UHP (ultra high power) metamorphic rocks are reviewed in this paper, as well as preliminary studies by OM-CL on ultrahigh-pressure eclogites, micaschist and marble at classical areas in the Dabie-Sulu UHP metamorphic belt. And its application and prospect in the fast identification of multi-phase tiny mineral facies and internal structural characterization, including growth zoning, distribution of trace elements, twinning and exsolution texture are discussed. A new perspective for our research on ultrahigh-pressure metamorphic rocks can be developed when combining OM-CL with mineral chemistry analysis techniques such as Roman spectrum, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA).

       

    • loading
    • Barker, C.E., Kopp, O.C., Colburn, H.Y., 1991. Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications: Text for Short Course No. 25 Sponsored by the Society of Economic Paleontologists and Mineralogists. SEPM, Dallas.
      Dobrzhinetskaya, L.F., Wirth, R., GreenⅡ, H.W., 2006. Nanometric Inclusions of Carbonates in Kokchetav Diamonds from Kazakhstan: A New Constraint for the Depth of Metamorphic Diamond Crystallization. Earth and Planetary Science Letters, 243(1-2): 85-93. doi:org/ 10.1016/j.epsl.2005.11.030
      Fu, Y.H., 2011. Cathodoluminescence Technology and Its Application in the Research of Sedimentary Rock's Cement. Petrochemical Industry Application, 30(8): 22-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NXSH201108013.htm
      Gaft, M., Reisfeld, R., Panczer, G., 2005. Modern Luminescence Spectroscopy of Minerals and Materials. Springer, Berlin.
      Götze, J., 2002. Potential of Cathodoluminescence (CL) Microscopy and Spectroscopy for the Analysis of Minerals and Materials. Analytical and Bioanalytical Chemistry, 374(4): 703-708. doi: 10.1007/s00216-002-1461-1
      Götze, J., 2012. Applications of Cathodoluminescence Microscopy and Spectroscopy in Geosciences. Microscopy and Microanalysis, 18(6): 1270-1284. doi: 10.1017/S1431927612001122
      Götze, J., Kempe, U., 2008. A Comparison of Optical Microscope- and Scanning Electron Microscope-Based Cathodoluminescence (CL) Imaging and Spectroscopy Applied to Geosciences. Mineralogical Magazine, 72(4): 909-924. doi:org/ 10.1180/minmag.2008.072.4.909
      Götze, J., Magnus, M., 1997. Quantitative Determination of Mineral Abundance in Geological Samples Using Combined Cathodoluminescence Microscopy and Image Analysis. European Journal of Mineralogy, 9(6): 1207-1215. doi: 10.1127/ejm/9/6/1207
      Götze, J., Schertl, H.P., Neuser, R.D., et al., 2012. Optical Microscope-Cathodoluminescence (OM-CL) Imaging as a Powerful Tool to Reveal Internal Textures of Minerals. Mineralogy and Petrology, 107(3): 373-392. doi: 10.1007/s00710-012-0256-0
      Gucsik, A., 2009. Cathodoluminescence and Its Application in the Planetary Sciences. Springer, Berlin.
      Huang, S.J., 1992. Relationship between Cathodoluminescence and Concentration of Iron and Manganese in Carbonate Minerals. Mineralogy and Petrology, 12(4): 74-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS199204010.htm
      Huang, S.J., Qing, H.R., Hu, Z.W., et al., 2008. Cathodoluminescence and Diagenesis of the Carbonate Rocks in Feixianguan Formation of Trassic, Eastern Sichuan Basin of China. Earth Science—Journal of China University of Geosciences, 33(1): 26-34 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.004
      Ingrin, J., Gillet, P., 1986. TEM Investigation of the Crystal Microstructures in a Quartz-Coesite Assemblage of the Western Alps. Physics and Chemistry of Minerals, 13(5): 325-330. doi: 10.1007/BF00308349
      Korsakov, A.V., De Gussem, K., Zhukov, V.P., et al., 2009. Aragonite-Calcite-Dolomite Relationships in UHPM Polycrystalline Carbonate Inclusions from the Kokchetav Massif, Northern Kazakhstan. European Journal of Mineralogy, 21(6): 1301-1311. doi: 10.1127/0935-1221/2009/0021-1992
      Lai, Y., 1995. Application of Cathodoluminescence to Mineralization and Lithogenesis Studying. Acta Scientiarum Naturalium Universitatis Pekinensis, 31(5): 631-638 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ505.016.htm
      Langenhorst, F., Poirier, J.P., 2002. Transmission Electron Microscopy of Coesite Inclusions in the Dora Maira High-Pressure Metamorphic Pyrope-Quartzite. Earth and Planetary Science Letters, 203(3-4): 793-803. doi:org/ 10.1016/S0012-821X(02)00949-4
      Lenze, A., Stöckhert, B., 2008. Microfabrics of Quartz Formed from Coesite (Dora-Maira Massif, Western Alps). European Journal of Mineralogy, 20(5): 811-826. doi: 10.1127/0935-1221/2008/0020-1848
      Li, S.G., Li, H.M., Chen, Y.Z., et al., 1997. The UHP Metamorphic Geochronology of Dabie-Sulu Terrain—Ⅱ. Zircon U-Pb Isotope System. Science in China (Series D), 27(3): 200-206 (in Chinese).
      Liu, J., Huangfu, H.Y., 2000. The Cathodoluminescence and Trace Elements in Carbonate Minerals. Sedimentary Geology and Tethyan Geology, 20(3): 71-76 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TTSD200003012.htm
      Maresch, W.V., Grevel, C., Stanek, K.P., et al., 2012. Multiple Growth Mechanisms of Jadeite in Cuban Metabasite. European Journal of Mineralogy, 24(2): 217-235. doi: 10.1127/0935-1221/2012/0024-2179
      Marfunin, A.S., 1979. Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer, Berlin.
      Marshall, D.J., Mariano, A.N., 1988. Cathodoluminescence of Geological Materials. Unwin Hyman, Boston.
      Mosenfelder, J.L., Schertl, H.P., Smyth, J.R., et al., 2005. Factors in the Preservation of Coesite: The Importance of Fluid Infiltration. American Mineralogist, 90(5-6): 779-789. doi: 10.2138/am.2005.1687
      Neuser, R.D., 1995. A New High-Intensity Cathodoluminescence Microscope and Its Application to Weakly Luminescing Minerals. Bochumer Geologische and Geotechnische Arbeiten, 44: 116-118. http://www.researchgate.net/profile/Rolf_Neuser/publication/280621081_A_new_high-intensity_cathodoluminescence_microscope_and_its_application_to_weakly_luminescing_minerals/links/55bf38f908aec0e5f445f50f.pdf
      Pagel, M., Barbin, V., Blanc, P., et al., 2000. Cathodoluminescence in Geosciences. Springer, Berlin.
      Peng, H.J., Wang, X.W., Tang, J.X., et al., 2010. The Application of Quartz Cathodoluminescence in Study of Igneous Rock. Rock and Mineral Analysis, 29(2): 153-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201002018.htm
      Ramseyer, K., AIDahan, A.A., Collini, B., et al., 1992. Petrological Modifications in Granitic Rocks from the Siljan Impact Structure: Evidence from Cathodoluminescence. Tectonophysics, 216(1-2): 195-204. doi:org/ 10.1016/0040-1951(92)90166-4
      Richter, D.K., Götte, T., Götze, J., et al., 2003. Progress in Application of Cathodoluminescence (CL) in Sedimentary Petrology. Mineralogy and Petrology, 79(3-4): 127-166. doi: 10.1007/s00710-003-0237-4
      Schertl, H.P., Maresch, W.V., Stanek, K.P., et al., 2012. New Occurrences of Jadeitite, Jadeite Quartzite and Jadeite-Lawsonite Quartzite in the Dominican Republic, Hispaniola: Petrological and Geochronological Overview. European Journal of Mineralogy, 24(2): 199-216. doi: 10.1127/0935-1221/2012/0024-2201
      Schertl, H.P., Medenbach, O., Neuser, R.D., 2005. UHP-Metamorphic Rocks from Dora Maira, Western Alps: Cathodoluminescence of Silica and Twinning of Coesite. Russian Geology and Geophysics, 46(12): 1345-1351. http://www.researchgate.net/publication/234058050_UHP-metamorphic_rocks_from_Dora_Maira_Western_Alps_Cathodoluminescence_of_silica_and_twinning_of_coesite
      Schertl, H.P., Neuser, R.D., Sobolev, N.V., et al., 2004. UHP-Metamorphic Rocks from Dora Maria/Western Alps and Kokchetav/Kazakhstan: New Insights Using Cathodoluminescence Petrology. European Journal of Mineralogy, 16(1): 49-57. doi: 10.1127/0935-1221/2004/0016-0049
      Sippel, R.F., 1965. Simple Device for Luminescence Petrology. Review of Scientific Instruments, 36(11): 556-558.
      Sippel, R.F., Glover, E.D., 1965. Structures in Carbonate Rocks Made Visible by Luminescence Petrology. Science, 150(3701): 1283-1287. doi: 10.1126/science.150.3701.1283
      Sobolev, N.V., Schertl, H.P., Neuser, R.D., et al., 2007. Relict Unusually Low Iron Pyrope-Grossular Garnets in UHPM Calc-Silicate Rocks of the Kokchetav Massif, Kazakhstan. International Geology Review, 49(8): 717-731. doi: 10.2747/0020-6814.49.8.717
      Sobolev, N.V., Schertl, H.P., Valley, J.W., et al., 2011. Oxygen Isotope Variations of Garnets and Clinopyroxenes in a Layered Diamondiferous Calcsilicate Rock from Kokchetav Massif, Kazakhstan: A Window into the Geochemical Nature of Deeply Subducted UHPM Rocks. Contributions to Mineralogy and Petrology, 162(5): 1079-1092. doi: 10.1007/s00410-011-0641-4
      Sun, J., Huang, X.P., Jin, Z.K., et al., 2009. Controlling Factors of Cathodoluminescence of Carbonate Minerals. Sedimentary Geology and Tethyan Geology, 29(1): 102-108 (in Chinese with English abstract).
      Tian, H.J., 1989. The Application of Cathodoluminescence in Sedimentology. Sedimentary Facies and Palaeogeography, 43(5): 56-65 (in Chinese).
      Wang, L., Jin, Z.M., Kusky, T.M., et al., 2010a. Microfabric Characteristics and Rheological Significance of Ultra-High-Pressure Metamorphosed Jadeite-Quartzite and Eclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology, 28(2): 163-182. doi: 10.1111/j.1525-1314.2009.00859.x
      Wang, L., Kusky, T.M., Li, S.Z., 2010b. Structural Geometry of an Exhumed UHP Terrane in the Eastern Sulu Orogen, China: Implications for Continental Collisional Processes. Journal of Structural Geology, 32(4): 423-444. doi:org/ 10.1016/j.jsg.2010.01.012
      Wang, Y.Q., Zhang, S.P., Ying, F.X., 1996. Applications of Cathodoluminescence Microscopy in Reservoir Research. Petroleum Industry Press, Beijing (in Chinese).
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xu, H.F., Chen, T., 1987. Application of Cathodoluminescence to Metamorphic and Granitic Rocks. Acta Petrologica et Mineralogica, 6(3): 279-284 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW198703008.htm
      Xu, H.F., Cui, J.G., Qiu, X.P., 2006. Applications of Cathodoluminescence Technology in Petrology and Mineral Deposits. Geological Publishing House, Beijing (in Chinese).
      Yang, Y., Chen, N.S., 2003. UV-Cathodoluminescence Mechanism of Secondary Enlarged Quartz and Its Importance. Rock and Mineral Analysis, 22(1): 1-3 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200301001.htm
      Ying, F.X., Wang, Y.Q., 1990. Elemental Composition and CL Color of Minerals. Journal of Chinese Electron Microscopy Society, 9(3): 244-244 (in Chinese).
      Yu, B.S., 1992. The Application and Development of Cathodoluminescence Microscope in the Study of Carbonate Rocks. Geological Science and Technology Information, 11(4): 92-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ199204020.htm
      Zhang, B.Q., Yu, H.Z., Jiang, Z.X., et al., 2003. Characteristics and Diagenetic Environments of Source Rocks by Cathodoluminescence. Petroleum Exploration and Development, 6: 117-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200303033.htm
      Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1-2): 135-158. doi:org/ 10.1016/j.chemgeo.2006.01.005
      付月红, 2011. 阴极发光技术在研究沉积岩胶结物中的应用. 石油化工应用, 30(8): 22-25. doi: 10.3969/j.issn.1673-5285.2011.08.008
      黄思静, 1992. 碳酸盐矿物的阴极发光性与其Fe、Mn含量的关系. 矿物岩石, 12(4): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199204010.htm
      黄思静, 卿海若, 胡作维, 等, 2008. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学——中国地质大学学报, 33(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801007.htm
      赖勇, 1995. 阴极发光技术在成岩成矿作用研究中的应用. 北京大学学报(自然科学版), 5: 631-638. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ505.016.htm
      李曙光, 李惠民, 陈移之, 等, 1997. 大别山-苏鲁地体超高压变质年代学——Ⅱ. 锆石U-Pb同位素体系. 中国科学(D辑), 27(3): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703001.htm
      刘洁, 皇甫红英, 2000. 碳酸盐矿物的阴极发光性与微量元素的关系. 沉积与特提斯地质, 20(3): 71-76. doi: 10.3969/j.issn.1009-3850.2000.03.013
      彭惠娟, 汪雄武, 唐菊兴, 等, 2010. 石英阴极发光在火成岩研究中的应用. 岩矿测试, 29(2): 153-160. doi: 10.3969/j.issn.0254-5357.2010.02.014
      孙靖, 黄小平, 金振奎, 等, 2009. 碳酸盐矿物阴极发光性的控制因素分析. 沉积与特提斯地质, 29(1): 102-108. doi: 10.3969/j.issn.1009-3850.2009.01.017
      田洪均, 1989. 阴极发光技术在沉积学中的应用. 岩相古地理, 43(5): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD198905006.htm
      王衍琦, 张绍平, 应凤祥, 1996. 阴极发光显微镜在储层研究中的应用. 北京: 石油工业出版社.
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      徐惠芬, 陈涛, 1987. 阴极发光仪在变质岩和花岗岩类岩石中的应用. 岩石矿物学杂志, 6(3): 279-284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198703008.htm
      徐惠芬, 崔京钢, 邱小平, 2006. 阴极发光技术在岩石学和矿床学中的应用. 北京: 地质出版社.
      杨勇, 陈能松, 2003. 次生石英的紫外阴极发光机理及意义. 岩矿测试, 22(1): 1-3. doi: 10.3969/j.issn.0254-5357.2003.01.001
      应凤祥, 王衍琦, 1990. 矿物的元素组成与阴极发光颜色. 电子显微学报, 9(3): 244-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV199003243.htm
      于炳松, 1992. 阴极发光显微镜在碳酸盐岩研究中的应用及进展. 地质科技情报, 11(4): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199204020.htm
      张本琪, 余宏忠, 姜在兴, 等, 2003. 应用阴极发光技术研究母岩性质及成岩环境. 石油勘探与开发, 6: 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200303033.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (3209) PDF downloads(353) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return