• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 4
    Apr.  2014
    Turn off MathJax
    Article Contents
    Zhao Guangming, Ye Siyuan, Ding Xigui, Yuan Hongming, Wang Jin, 2014. Sedimentary Environmental Partitioning of Holocene Strata and Assessment of Carbon Burial Rate of Various Paleo-Environments in the Yellow River Delta. Earth Science, 39(4): 451-461. doi: 10.3799/dqkx.2014.043
    Citation: Zhao Guangming, Ye Siyuan, Ding Xigui, Yuan Hongming, Wang Jin, 2014. Sedimentary Environmental Partitioning of Holocene Strata and Assessment of Carbon Burial Rate of Various Paleo-Environments in the Yellow River Delta. Earth Science, 39(4): 451-461. doi: 10.3799/dqkx.2014.043

    Sedimentary Environmental Partitioning of Holocene Strata and Assessment of Carbon Burial Rate of Various Paleo-Environments in the Yellow River Delta

    doi: 10.3799/dqkx.2014.043
    • Received Date: 2013-06-02
    • Publish Date: 2014-04-15
    • In order to study the carbon burial rate of various paleo-environments of Holocene strata in the Yellow River delta (YRD), one 30.3-meter-sediment core, obtained from YRD in 2007, is analyzed for sedimentary characteristics, water content, organic carbon, total carbon and nutritional components in this paper. By analyzing the strata sequence, the Holocene strata are divided into eight kinds of sedimentary environments. Comprehensive analysis method of historical geography and sedimentary geology is used to determine the precise depositional age of the modern Yellow River delta (MYRD) while pre-MYRD age is deduced. The carbon burial rates of various sedimentary environments are calculated based on the certain depositional age. The results show that the nutrient elements are well related to total carbon and organic carbon, and sediment rate is the main controlling factor of the accretion rate of organic carbon and total carbon. Although the carbon concentration is remarkably lower in the sediments, the average carbon accretion rate reaches 1 331 g/(m2·a) because of high sedimentation rate, which is significantly higher than that of the wetlands with high carbon concentration. It is concluded that the MYRD is likely the major sink of carbon.

       

    • loading
    • Azevedo, W.R., Faquin, V., Femandes, L.A., 2001. Boron Adsorption in Lowland Soils from Southern of the State of Minas Gerais, Brazil. Pesquisa Agropecuária Brasileira, 36(7): 957-964. doi: 10.1590/S0100-204X2001000700005
      Bornhold, B.D., Yang, Z.S., Keller, G.H., et al., 1986. Sedimentary Framework of Modern Huanghe (Yellow River) Delta. Geo-Marine Letters, 6(2): 77-83. doi: 10.1007/BF02281643
      Brevik, E.C., Homburg, J.A., 2004. A 5 000 Year Record of Carbon Sequestration from a Coastal Lagoon and Wetland Complex, Southern California, USA. Catena, 57(3): 221-232. doi: 10.1016/j.catena.2003.12.001
      Bridgham, S.D., Megonigal, J.P., Keller, J.K., et al., 2006. The Carbon Balance of North American Wetlands. Wetlands, 26(4): 889-916. doi: 10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
      Cheng, G.D., Xue, C.T., 1997. Sedimentary Geology on the Yellow River Delta. Geological Publishing House, Beijing, 48-55 (in Chinese).
      Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., et al., 2003. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Global Biogeochemical Cycles, 17(4): 1111-1120. doi: 10.1029/2002GB001917
      Craft, C., 2007. Freshwater Input Structures Soil Properties, Vertical Accretion, and Nutrient Accumulation of Georgia and U.S. Tidal Marshes. Limnol. Oceanogr., 52(3): 1220-1230. doi: 10.4319/lo.2007.52.3.1220
      Craft, C.B., Richardson, C.J., 1998. Recent and Long-Term Organic Soil Accretion and Nutrient Accumulation in the Everglades. Soil Science Society of American Journal, 62(3): 834-843. doi: 10.2136/sssaj1998.03615995006200030042x
      Ding, Y.R., Ye, S.Y., Zhao, Q.S., 2012. Nutrients and Carbon Sequestration in the Newly Created Wetlands of Yellow River Delta. Geological Review, 58(1): 183-189 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201201019.htm
      Duan, X.N., Wang, X.K., Fei, L., et al., 2008. Primary Evaluation of Carbon Sequestration Potential of Wetlands in China. Acta Ecologica Sinica, 28(2): 463-469. doi: 10.1016/S1872-2032(08)60025-6
      Fan, D.J., Yang, Z.S., Guo, Z.G., 2000. Review of 210Pb Dating in the Continental Shelf of China. Advance in Earth Sciences, 15(3): 297-302 (in Chinese with English abstract). http://www.researchgate.net/publication/284046627_Review_of_210Pb_dating_in_the_continental_shelf_of_China
      Guo, Z.G., Yang, Z.S., Qu, Y.H., et al., 1999. Distribution Pattern of Carbon Storage in the Surficial Sediments in the Middle Continental Shelf Mud Area and Its Adjoining East China Sea Areas. Oceanologia et Limnologia Sinica, 30(4): 421-426(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199904011.htm
      Hanebuth, T.J.J., Voris, H.K., Yokoyama, Y., et al., 2011. Formation and Fate of Sedimentary Depocentres on Southeast Asia's Sunda Shelf over the Past Sea-Level Cycle and Biogeographic Implications. Earth-Science Reviews, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006
      Hatton, R.S., Patrick, W.H., DeLaune, R.D., 1982. Sedimentation Nutrient Accumulation and Early Diagenesis in Louisiana Barataria Basin Coastal Marshes. In: Kennedy, V.S., ed., Estuarine Comparisons. Academic Press, New York, 255-267.
      Li, G.X., Cheng, G.D., Wei, H.L., et al., 1994. Shear Zone of Flow Field in the Modern Yellow River Estuary. Chinese Science Bulletin, 39(10): 928-932 (in Chinese). doi: 10.1360/csb1994-39-10-928
      Liu, J., Saito, Y., Wang, H., et al., 2009. Stratigraphic Development during the Late Pleistocene and Holocene Offshore of the Yellow River Delta, Bohai Sea. Journal of Asian Earth Sciences, 36(4-5): 318-331. doi: 10.1016/j.jseaes.2009.06.007
      Nair, V.D., Graetz, D.A., Reddy, K.R., et al., 2001. Soil Development in Phosphate-Mined Created Wetlands of Florida, USA. Wetlands, 21(2): 232-239. doi: 10.1672/0277-5212(2001)021[0232:SDIPMC]2.0.CO;2
      Pang, J.Z., Si, S.H., 1979. The Estuary Changes of Huanghe River—I. Changes in Modern Time. Oceanologia et Limnologia Sinica, 10(2): 136-141 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ197902005.htm
      Prahl, F.G., Bennett, J.T., Carpenter, R., 1980. The Early Diagenesis of Aliphatic Hydrocarbons and Organic Matter in Sedimentary Particulates from Dabob Bay, Washington. Geochimica et Cosmochimica Acta, 44(12): 1967-1976. doi: 10.1016/0016-7037(80)90196-9
      Prior, D.B., Yang, Z.S., Bornhold, B.D., et al., 1986. The Subaqueous Delta of the Modern Huanghe (Yellow River). Geo-Marine Letters, 6(2): 65-75. doi: 10.1007/BF02281642
      Smith, P., 2004. Carbon Sequestration in Croplands: The Potential in Europe and the Global Context. European Journal of Agronomy, 20(3): 229-236. doi: 10.1016/j.eja.2003.08.002
      Turner, R.E., Swenson, E.M., Milan, C.S., 2002. Organic and Inorganic Contributions to Vertical Accretion in Salt Marsh Sediments. In: Weinstein, M., Kreeger, D.A., eds., Concepts and Controversies in Tidal Marsh Ecology. Kluwer Acadejmic Publishing, Dordrecht, 583-595. doi: 10.1007/0-306-47534-0_27
      Wang, H., Fan, C.F., 2005. The 14C Database(Ⅱ) on the Circum-Bohai Sea-Coast. Quaternary Sciences, 25(2): 141-156 (in Chinese with English abstract).
      Wang, Z.H., Huang, S.G., 1988. Study Change of the Huanghe River Delta by Means of Sea Charts Mesured in the Recent and the Ancient Years. Coastal Engineering, 7(2): 47-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC198802006.htm
      Xian, B.Z., Jiang, Z.X., 2005. Environment Evolution and Eustatic Change of Holocene in the Yellow River Delta. Marine Geology & Quaternary Geology, 25(3): 1-7 (in Chinese with English abstract). http://www.researchgate.net/publication/285795983_Environment_evolution_and_eustatic_change_of_Holocene_in_the_Yellow_River_Delta
      Xu, J.S., Meng, Y., Zhang, X.L., et al., 2006. Palaeogeographic Environmental Evolution in the Huanghe River Estuary since Late Pleistocene. Quaternary Sciences, 26(3): 327-333 (in Chinese with English abstract).
      Xue, C.T., Li, S.Q., Zhou, Y.Q., 2008. Sedimentary Record of Yellow River Delta Superlobe in 11—1099. Acta Sedimentologica Sinica, 26(5): 804-812 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb200805012
      Xue, C.T., Ye, S.Y., Gao, M.S., et al., 2009. Determination of Depositional Age in the Huanghe Delta in China. Acta Oceanologica Sinica, 31(1): 117-124 (in Chinese with English abstract).
      Ye, S.Y., Laws, E.A., Wu, Q., et al., 2010. Pyritization of Trace Metals in Estuarine Sediments and the Controlling Factors: A Case in Jiaojiang Estuary of Zhejiang Province, China. Environmental Earth Sciences, 61(5): 973-982. doi: 10.1007/s12665-009-0416-7
      Ye, S.Y., Laws, E.A., Zhong, S.J., et al., 2011. Sequestration of Metals through Association with Pyrite in Subtidal Sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, China. Marine Pollution Bulletin, 62(5): 934-941. doi: 10.1016/j.marpolbul.2011.02.052
      Zhang, S.P., Wang, L., Hu, J.J., et al., 2011. Organic Carbon Accumulation Capability of Two Typical Tidal Wetland Soils in Chongming, Dongtan, China. Journal of Environmental Sciences, 23(1): 87-94. doi: 10.1016/S1001-0742(10)60377-4
      Zou, Y.L., Tan, Q.X., Shi, N.H., 1982. River System Change of Historical Period, Huanghe. In: Chinese Science Bulletin, ed., Physical Geography of China. Science Press, Beijing, 33-86 (in Chinese).
      成国栋, 薛春汀, 1997. 黄河三角洲沉积地质学. 北京: 地质出版社, 48-55.
      丁玉蓉, 叶思源, 赵全升, 2012. 黄河三角洲新生湿地土壤对营养成分和碳的扣留. 地质论评, 58(1): 183-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201019.htm
      范德江, 杨作升, 郭志刚, 2000. 中国陆架210Pb测年应用现状与思考. 地球科学进展, 15(3): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003010.htm
      郭志刚, 杨作升, 曲艳惠, 等, 1999. 东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究. 海洋与湖沼, 30(4): 421-426. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199904011.htm
      李广雪, 成国栋, 魏合龙, 等, 1994. 现代黄河口区流场切变带. 科学通报, 39(10): 928-932. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199410017.htm
      庞家珍, 司书亨, 1979. 黄河河口演变: I. 近代历史变迁. 海洋与湖沼, 10(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB200303000.htm
      王宏, 范昌福, 2005. 环渤海海岸带14C数据集(Ⅱ). 第四纪研究, 25(2): 141-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200502002.htm
      王志豪, 黄世光, 1988. 利用近年施测海图及古海图研究黄河三角洲变迁. 海岸工程, 7(2): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC198802006.htm
      鲜本忠, 姜在兴, 2005. 黄河三角洲地区全新世环境演化及海平面变化. 海洋地质与第四纪地质, 25(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200503000.htm
      徐家声, 孟毅, 张效龙, 等, 2006. 晚更新世末期以来黄河口古地理环境的演变. 第四纪研究, 26(3): 327-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200603002.htm
      薛春汀, 李绍全, 周永青, 2008. 西汉末-北宋黄河三角洲(公元11—1099年)的沉积记录. 沉积学报, 26(5): 804-812. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805015.htm
      薛春汀, 叶思源, 高茂生, 等, 2009. 现代黄河三角洲沉积物沉积年代的确定. 海洋学报, 31(1): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200901015.htm
      邹逸麟, 谭其骧, 史念海, 1982. 历史时期的水系变迁, 黄河. 见: 中国科学院《中国自然地理》编辑委员会编, 中国自然地理. 北京: 科学出版社, 33-86.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(3)

      Article views (3943) PDF downloads(536) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return