• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 6
    Jun.  2014
    Turn off MathJax
    Article Contents
    Lin Dan, Jin Menggui, Ma Bin, Wang Bingguo, 2014. Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters. Earth Science, 39(6): 760-768. doi: 10.3799/dqkx.2014.071
    Citation: Lin Dan, Jin Menggui, Ma Bin, Wang Bingguo, 2014. Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters. Earth Science, 39(6): 760-768. doi: 10.3799/dqkx.2014.071

    Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters

    doi: 10.3799/dqkx.2014.071
    • Received Date: 2013-10-13
    • Publish Date: 2014-06-15
    • Ten undisturbed soil samples were collected from deep vadose zone (8.0-21.0 m) at Zhengding, Hebei, and analyzed to study how thickening vadose zone impacts the infiltration recharge processes. These samples were measured by Pressure Plate Extractor to gain the soil retention curves, which were fitted by Mualem-van Genuchten Model using RETC software. Unsaturated hydraulic conductivity and the relation curves were obtained through the curve-fitting processes. The impact on the infiltration recharge processes at the thickening vadose zone is discussed according the Darcy's equation. It is concluded that the unsaturated hydraulic conductivities at sampling time were 25-240 mm/a at the depth of 8.0-21.0 m. If the velocity of water table decline was fast at a certain depth historically, the unsaturated conductivities with same water content should also have large values, which shows the soil has large infiltration capacity. Soil hydraulic parameters and infiltration capacities would change because of water table fluctuated-declining and drainage consolidation, which would impact vertical infiltration recharge.

       

    • loading
    • Ahuja, L.R., El-Swaify, S.A., 1979. Determining Soil Hydrologic Characteristics on a Remote Forest Watershed by Continuous Monitoring of Soil-Water Pressures, Rainfall and Runoff. Journal of Hydrology, 44(1-2): 135-147. doi: http://dx.doi.org/ 10.1016/0022-1694(79)90151-3
      Burdine, N.T., 1953. Relative Permeability Calculations from Pore Size Distribution Data. Journal of Petroleum Technology, 5(3): 71-78. doi: http://dx.doi.org/ 10.2118/225-G
      Chong, S.K., Green, R.E., Ahuja, L.R., 1981. Simple In-Situ Determination of Hydraulic Conductivity by Power Function Descriptions of Drainage. Water Resources Research, 17(4): 1109-1114. doi: 10.1029/WR017i004p01109
      Enfield, C.G., Hsieh, J.J.C., Warrick, A.W., 1973. Evaluation of Water Flux above a Deep Water Table Using Thermocouple Psychrometers. Soil Science Society of America Journal, 37(6): 968-970. doi: 10.2136/sssaj1973.03615995003700060048x
      Kengni, L., Vachaud, G., Thony, J.L., et al., 1994. Field Measurements of Water and Nitrogen Losses under Irrigated Maize. Journal of Hydrology, 162(1-2): 23-46. doi: http://dx.doi.org/ 10.1016/0022-1694(94)90003-5
      Lei, Z.D., Yang, S.X., Xie, S.C., 1988. Soil Water Dynamic. Tsinghua University Press, Beijing, 30 (in Chinese).
      Liu, J., Chen, Z.Y., Zhang, Z.J., et al., 2009. Estimation of Natural Groundwater Recharge in the Hutuo River Alluvial-Proluvial Fan Using Environmental Tracers. Geological Science and Technology Information, 28(6): 114-118 (in Chinese with English abstract).
      Liu, Y.L., Liang, X., Lin, D., et al., 2013. Soil Hydraulic Parameters in Deep Vadose Zone Based on Stable Evaporation—A Case Study in Xinji Area. China Rural Water and Hydropower, 10: 27-32 (in Chinese with English abstract).
      Miao, J.J., Chen, G., Pan, J.Y., et al., 2009. An Experimental Study for the Consolidation of the Typical Clayey Soil in the North China Plain. Geological Science and Technology Information, 28(5): 109-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200905015.htm
      Mualem, Y., 1976. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resources Research, 12(3): 513-522. doi: 10.1029/WR012i003p00513
      Nimmo, J.R., Stonestrom, D.A., Akstin, K.C., 1994. The Feasibility of Recharge Rate Determinations Using the Steady-State Centrifuge Method. Soil Science Society of America Journal, 58(1): 49-56. doi: 10.2136/sssaj1994.03615995005800010007x
      Normand, B., Recous, S., Vachaud, G., et al., 1997. Nitrogen-15 Tracers Combined with Tensio-Neutronic Method to Estimate the Nitrogen Balance of Irrigated Maize. Soil Science Society of America Journal, 61(5): 1508-1518. doi: 10.2136/sssaj1997.03615995006100050031x
      Rushton, K., 1997. Recharge from Permanent Water Bodies. In: Simmers, I., ed., Recharge of Phreatic Aquifers in (Semi) Arid Areas. A A Balkema Publishers, Rotterdam, 215-255.
      Sammis, T.W., Evans, D.D., Warrick, A.W., 1982. Comparison of Methods to Estimate Deep Percolation Rates. Journal of the American Water Resources Association, 18(3): 465-470. doi: 10.1111/j.1752-1688.1982.tb00013.x
      Scanlon, B.R., Healy, R.W., Cook, P.G., 2002. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeology Journal, 10(1): 18-39. doi: 10.1007/s10040-001-0176-2
      Šimůnek, J., Šejna, M., Saito, H., et al., 2009. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. University of California Riverside, California.
      Sisson, J.B., 1987. Drainage from Layered Field Soils: Fixed Gradient Models. Water Resources Research, 23(11): 2071-2075. doi: 10.1029/WR023i011p02071
      Song, B., 2012. Effect of Vadose Zone Thickness and Formation Properties on Groundwater Recharge (Dissertation). Wuhan University, Wuhan (in Chinese with English Abstract).
      Steenhuis, T.S., Jackson, C.D., Kung, S.K., et al., 1985. Measurement of Groundwater Recharge in Eastern Long Island, New York, USA. Journal of Hydrology, 79(1-2): 145-169. doi: http://dx.doi.org/ 10.1016/0022-1694(85)90190-8
      Stephens, D.B., Knowlton, R.J., 1986. Soil Water Movement and Recharge through Sand at a Semiarid Site in New Mexico. Water Resources Research, 22(6): 881-889. doi: 10.1029/WR022i006p00881
      Tan, X.C., 2012. The Study of Groundwater Recharge in North China Plain (Dissertation). Wuhan University, Wuhan (in Chinese with English abstract).
      van Genuchten, M.T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
      Zhang, G.H., Fei, Y.H., Shen, J.M., et al., 2007. Influence of Unsaturated Zone Thickness on Precipitation Infiltration for Recharge of Groundwater. Journal of Hydraulic Engineering, 38(5): 611-617 (in Chinese with English abstract).
      Zhang, G.H., Fei, Y.H., Zhang, X.N., et al., 2008. Abnormal Variation of Groundwater Flow Field in Plain Area of Hutuo River Basin and Analysis on Its Cause. Journal of Hydraulic Engineering, 39(6): 747-752 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200806016.htm
      Zhang, R.Q., Gao, Y.F., Wang, P.Y., 1985. A Preliminary Study on the Mechanism of Water Release from Saturated Layered Soils Age. Earth Sciences—Journal of Wuhan College of Geology, 10(1): 21-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198501005.htm
      Zhang, R.Q., Liang, X., Jin, M.G., et al., 2011. Fundamental of Hydrogeology (6th Edition). Geological Publishing House, Beijing, 23 (in Chinese).
      Zhang, W.Z., 1996. Groundwater and Soil Water Dynamic. China Water and Power Press, Beijing, 215 (in Chinese).
      雷志栋, 杨诗秀, 谢森传, 1988. 土壤水动力学. 北京: 清华大学出版社, 30.
      刘君, 陈宗宇, 张兆吉, 等, 2009. 利用环境示踪剂估算滹沱河冲洪积扇地下水天然补给. 地质科技情报, 28(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906018.htm
      刘亚磊, 梁杏, 林丹, 等, 2013. 稳定蒸发条件下的深厚包气带土壤水力参数测试及入渗补给估算——以辛集新城地区为例. 中国农村水利水电, (10): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201310010.htm
      苗晋杰, 陈刚, 潘建永, 等, 2009. 华北平原典型黏性土体固结特性的试验研究. 地质科技情报, 28(5): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200905015.htm
      宋博, 2012. 包气带厚度和岩性对地下水入渗补给影响(硕士学位论文). 武汉: 武汉大学.
      谭秀翠, 2012. 华北平原地下水补给研究(博士学位论文). 武汉: 武汉大学.
      张光辉, 费宇红, 申建梅, 等, 2007. 降水补给地下水过程中包气带变化对入渗的影响. 水利学报, 38(5): 611-617. doi: 10.3321/j.issn:0559-9350.2007.05.016
      张光辉, 费宇红, 张行南, 等, 2008. 滹沱河流域平原区地下水流场异常变化与原因. 水利学报, 39(6): 747-752. doi: 10.3321/j.issn:0559-9350.2008.06.017
      张人权, 高云福, 王佩仪, 1985. 层状土重力释水机制初步探讨. 地球科学——武汉地质学院学报, 10(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501005.htm
      张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础(第六版). 北京: 地质出版社, 23.
      张蔚榛, 1996. 地下水与土壤水动力学. 北京: 中国水利水电出版社, 215.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (4265) PDF downloads(575) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return