• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 6
    Jun.  2014
    Turn off MathJax
    Article Contents
    Zhao Jianpeng, Sun Jianmeng, Jiang Liming, Chen Hui, Yan Guoliang, 2014. Effects of Cementation on Elastic Property and Permeability of Reservoir Rocks. Earth Science, 39(6): 769-774. doi: 10.3799/dqkx.2014.072
    Citation: Zhao Jianpeng, Sun Jianmeng, Jiang Liming, Chen Hui, Yan Guoliang, 2014. Effects of Cementation on Elastic Property and Permeability of Reservoir Rocks. Earth Science, 39(6): 769-774. doi: 10.3799/dqkx.2014.072

    Effects of Cementation on Elastic Property and Permeability of Reservoir Rocks

    doi: 10.3799/dqkx.2014.072
    • Received Date: 2013-09-07
    • Publish Date: 2014-06-15
    • In order to investigate the efects of cementation on elastic properties and permeability of reservoir rocks, a 3D digital model of core was constructed. Then this model was simulated using the process-based method and finite element lattice Boltzmann method. The results show that cementation influences the rock stiffness and pore connectivity, controlling elastic modulus and rock permeability, respectively. Given same porosity, rocks with cement occurring in the pore throats have high elastic modulus and low permeability; whereas rocks with cement precipitating within pores have low elastic modulus and high permeability. Among the simulated three cementation scenarios, the rock elastic modulus increases with increasing amount of cement, and there is a linear relationship between them, Rock permeability, however, deceases with increasing amount of cement, because permeability is more sensitive to where cements precipitate than rock elastic parameters.

       

    • loading
    • Chen, H., Chen, S., Mathaeus, W. H., 1992. Recovery of the Navier-Stokes Equation Using a Lattice Gas Boltzmann Method. Physical Review A, 45(8): 5339-5342. doi: 10.1103/PhysRevA.45.R5339
      Ding, X. G., Ye, S. Y., Gao, Z. J., 2005. Development and Applications of Grain Size Analysis Technique. Global Geology, 24(2) : 203-207 (in Chinese with English abstract).
      Garboczi, E. J., 1998. Finite Element and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials. NIST Internal Report 6269, Gaithersburg.
      Ji, C. J., Yi, H. S., Xia, G. Q., 2012. An Image-Analysis. Technique to Measure Grain-Size V ariation in Thin Sections of Clastic Sediments. Geological Science and Technology In formation, 31(3): 122-127 (in Chinese with English abstract).
      Liu, X. F., Sun, J. M., Wang, H. T., 2009a. Reconstruction of 3-D Digital Cores Using a Hybrid Method. A pplied Geophysics, 6(2): 105-112. doi: 10.1007/s11770-009-0017-y
      Liu, X. F., Sun, J. M., Wang, H. T., 2009b. Numerical Simulation of Rock Electrical Properties Based on Digital Cores. Applied Geophysics, 6(l): 1- 7. doi: 10.1007/s11770-009-0001-6
      Madadi, M., Jones, A. C., Arns, C. H., et al., 2009. 3D Imaging and Simulation of Elastic Properties of Porous Materials. Computing in Science and Engineering, ll(4): 65-73. doi: 10.1109/MCSE.2009.110
      Okabe, H., Blunt, M. J., 2004. Prediction of Permeability for Porous Media Reconstructed Using Multiple-Point Statistics. Physical Review E, 70(6): 066135. doi: 10.1103/PhysRevE.70.066135
      Øren, P. E., Bakke, S., 2002. Process Based Reconstruction of Sandstones and Predictions of Transport Properties. Transport in Porous Media, 46(2-3): 311-343. doi: 10.1023/A:1015031122338
      Qian, Y. H., Humieres, D. D., Lallemand, P., 1992. Lattice BGK Model for Navier-Stokes Equation. Europhysics Letters, 17(6): 479-484. doi: 10.1209/0295-5075/17/6/001
      Rosenberg, E., Lynch, J., Gueroult, P., et al., 1999. High Resolution 3D Reconstructions of Rocks and Composites. Oil & Gas Science and Technology, 54(4) : 497-511. doi: 10.2516/ogst:1999043
      Schwartz, L. M., Kimminau, S., 1987. Analysis of Electrical Conduction in the Grain Consolidation Model. Geophysics, 52(10): 1402-1411. doi: 10.1190/1.1442252
      Wang, C. C., Yao, J., Yang, Y. F., et al., 2012. Percolation Properties Analysis of Carbonate Digital Core Based on Lattice Boltzmann Method. Journal of China University of Petroleum, 36(6): 94-98 (in Chinese with English abstract).
      Wu, K.J., Van Dijke, M. I. J., Couples, G. D., et al., 2006. 3D Stochastic Modelling of Heterogeneous; Porous Media-Applications to Reservoir Rocks. Transport in Porous Media, 65(3) : 443-467. doi: 10.1007/s11242-006-0006-z
      Zhang, J. Y., Sun, J. M., 2012. Rock Elastic Properties Determined by Using Digital Rock and Effective Medium Model. Journal of Oil and Gas Technology, 34(2): 65-70 (in Chinese with English abstract).
      Zhu, Y. H., Tao, G., 2007. Sequential Indicator Simulation Technique and Its Application in 3D Digital Core Modeling. Well Logging Technology, 31(2): 112-115 (in Chinese with English abstract).
      丁喜桂, 叶思源, 高宗军, 2005. 粒度分析理论技术进展及其应用. 世界地质, 24(2): 203-207. doi: 10.3969/j.issn.1004-5589.2005.02.017
      季长军, 伊海生, 夏国清, 2012. 图像分析技术在碎屑岩粒度分析中的应用. 地质科技情报, 31(3): 122-127. doi: 10.3969/j.issn.1000-7849.2012.03.019
      王晨晨, 姚军, 杨永飞, 等, 2012. 基于格子玻尔兹曼方法的碳酸盐岩数字岩心渗流特征分析. 中国石油大学学报(自然科学版), 36(6): 94-98. doi: 10.3969/j.issn.1673-5005.2012.06.017
      张晋言, 孙建孟, 2012. 应用数字岩心和有效介质模型研究岩石弹性性质. 石油天然气学报, 34(2): 65-70. doi: 10.3969/j.issn.1000-9752.2012.02.014
      朱益华, 陶果, 2007. 顺序指示模拟技术及其在3D数字岩心建模中的应用. 测井技术, 31(2): 112-115. doi: 10.3969/j.issn.1004-1338.2007.02.005
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (4680) PDF downloads(1142) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return