• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 7
    Jul.  2014
    Turn off MathJax
    Article Contents
    Xiong Suofei, He Mouchun, Yao Shuzhen, Cui Yubao, Hu Xinlu, Chen Bin, 2014. Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range: Implications for Ore Genesis. Earth Science, 39(7): 820-836. doi: 10.3799/dqkx.2014.077
    Citation: Xiong Suofei, He Mouchun, Yao Shuzhen, Cui Yubao, Hu Xinlu, Chen Bin, 2014. Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range: Implications for Ore Genesis. Earth Science, 39(7): 820-836. doi: 10.3799/dqkx.2014.077

    Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range: Implications for Ore Genesis

    doi: 10.3799/dqkx.2014.077
    • Received Date: 2013-10-12
    • Publish Date: 2014-07-15
    • The Chalukou Mo deposit lies in the northern Great Xing'an Range, in which veinlet and breccia dominate mineralization. The whole hydrothermal ore-forming processes involve the following four stages: I. quartz-potash feldspar stage; II. quartz-molybdenite stage; III. quartz-polymetallic sulfide stage; IV. quartz-fluorite-calcite stage. The petrographic and laser Raman spectroscopy study show that the melt-fluid inclusions in quartz phenocryst contain component of oligoclase and albite, indicating they directly exsolved from primary magma. Halite, sylvite, hematite, and gypsum are recognized as daughter minerals in S-type inclusions of granite porphyry, suggesting high oxygen fugacity. The stageⅠquartz captures (L+V)-type, C-type, and S-type (contain halite, sylvite, hematite, and anhydrite daughter minerals) fluid inclusions. The stage Ⅱ quartz captures (L+V)-type, C-type, and S-type (contain halite, sylvite, chalcopyrite, and molybdenite daughter minerals) fluid inclusions, in addition, V-type and S-type fluid inclusions are coexistent. In the stage III, there are (L+V)-type and S-type with calcite as daughter minerals. Stage IV develops (L+V)-type and L-type fluid inclusions. Microthermometric data show the homogenization temperatures (530 ℃→120 ℃) and salinities (66.7% NaCl equiv→1.2% NaCl equiv) decrease gradually. The gas components have a certain amount of CO2 in every stage, and the liquid components in fluid inclusions have Na+, K+, Ca2+, Cl-, and SO42-, and small amount of F-. The initial fluids are high oxygen fugacity and salinity NaCl-H2O-CO2 fluid system with abundant CO2. The homogenization temperatures, salinities, lgfO2, and CO2 content tend to fall from the early to late stage. The decline of homogenization temperatures, salinities, and CO2 content as well as sericitization greatly hinder the depositing of metallogenic elements.

       

    • loading
    • Audétat, A., Pettke, T., 2003. The Magmatic-Hydrothermal Evolution of Two Barren Granites: A Melt and Fluid Inclusion Study of the Rito Del Medio and Canada Pinabete Plutons in Northern New Mexico(USA). Geochimica et Cosmochimica Acta, 67(1): 97-121. doi: 10.1016/s0016-7037(02)01049-9
      Bodnar, R.J., 1994. Synthetic Fluid Inclusions: XII. The System H2O-NaCl. Experimental Determination of the Halite Liquidus and Isochors for a 40 wt% NaCl Solution. Geochimica et Cosmochimica Acta, 58: 1053-1063. doi: 10.1016/0016-7037(94)90571-1
      Burke, E.A.J., 2001. Raman Microspectrometry of Fluid Inclusions. Lithos, 55(1-4): 139-158. doi: 10.1016/s0024-4937(00)00043-8
      Chen, H.H., Wu, Y., Xiao, Q.G., 2013. Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China. Earth Science—Journal of China University of Geosciences38(3): 541-552(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201303013.htm
      Chen, Y.J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5): 1223-1268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201205002.htm
      Chen, Z.G., Zhang, L.C., Wan, B., et al., 2008. Geochemistry and Geological Significances of Ore-Forming Porphyry with Low Sr and Yb Value in Wunugetushan Copper-Molybdenum Deposit, Inner Mongolia. Acta Petrologica Sinica, 24(1): 115-128 (in Chinese with English abstract). http://www.researchgate.net/publication/280020591_Geochemistry_and_geological_significances_of_ore-forming_porphyry_with_low_Sr_and_Yb_value_in_Wunugetushan_copper-molybdenum_deposit_Inner_Mongolia
      Cline, J.S., Bodnar, R.J., 1991. Can Economic Porphyry Copper Mineralization be Generated by a Typical Calc-Alkaline Melt. Journal of Geophysical Research: Solid Earth and Planets, 96(B5): 8113-8126. doi: 10.1029/91jb00053
      Cline, J., Bodnar, R.J., 1994. Direct Evolution of Brine from a Crystallizing Silicic Melt at the Questa, New Mexico, Molybdenum Deposit. Economic Geology, 89(8): 1780-1802. doi: 10.2113/gsecongeo.89.8.1780
      Candela, P.A., 1989. Calculation of Magmatic Fluid Contributions to Porphyry-Type Ore Systems—Predicting Fluid Inclusion Chemistries. Geochemical Journal, 23(6): 295-305. doi: 10.2343/geochemj.23.295
      Davidson, P., Kamenetsky, V.S., 2007. Primary Aqueous Fluids in Rhyolitic Magmas: Melt Inclusion Evidence for Pre- and Post-Trapping Exsolution. Chemical Geology, 237: 372-383. doi: 10.1016/j.chemgeo.2006.07.009
      Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1): 197-202. doi: 10.2113/gsecongeo.83.1.197
      He, M.C., Zhang, Z.J., 2001. The Application of Laser Raman Microspectroscopy to Study of Mineral Deposits. Rock and Mineral Analysis, 20(1): 43-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200101010.htm
      Hu, S.X., Zhao, Y.Y., Sun, J.G., et al., 2002. Fluids and Their Sources for Gold Mineralizations in the North China Platform. Journal of Nanjing University (Natural Sciences), 38(3): 381-391 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200203013.htm
      Li, N., Sun. Y.L., Li. J., et al., 2007. Molybdenite Re/Os Isochron Age of the Wunugetu Shan Porphyry Cu/Mo Deposit, Inner Mongolia and Its Implication for Metallogenic Geodynamics. Acta Petrologica Sinica, 23(11): 2881-2888 (in Chinese with English abstract). http://www.oalib.com/paper/1472697
      Li, J.X., Li, G.M., Qin, K.Z., et al., 2011. High-Temperature Magmatic Fluid Exsolved from Magma at the Duobuza Porphyry Copper-Gold Deposit, Northern Tibet. Geofluids, 11(2): 134-143. doi: 10.1111/j.1468-8123.2011.00325.x
      Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. The Regional Metallogeny of Da Xinganling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract). http://www.researchgate.net/publication/302500005_The_regional_metallogeny_of_Da_Hinggan_Ling_China
      Liu, J., Mao, J., W., Wu, G., et al., 2013a. Zircon U-Pb Dating for the Magmatic Rocks in the Chalukou Porphyry Mo Deposit in the Northern Great Xing'an Range, China and Its Geological Significance. Acta Geologica Sinica, 87(2) : 208-226(in Chinese with English abstract). http://www.researchgate.net/publication/303160692_Zircon_U-Pb_dating_for_the_magmatic_rocks_in_the_Chalukou_Porphyry_Mo_deposit_in_the_Northern_Great_Xing'an_Range_China_and_its_geological_significance
      Liu, J., Wu, G., Wang, F., et al., 2013b. Fluid Inclusions and Stable Isotope Characteristics of the Chalukou Porphyry Mo Deposit in Heilongjiang Province. Geology in China, 40(4): 1231-1251 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201304022.htm
      Liu, Y.F., Nie, F.J., Sun, Z.J., et al., 2011. Discovery of Chalukou Super Large Scale Molybdenum Polymetallic Deposit, Northern Daxing' Anlin Mountain, China, and Its Significance. Mineral Deposits, 30(4): 759-764 (in Chinese with English abstract). http://www.researchgate.net/publication/288192676_Discovery_of_Chalukou_superlarge_scale_molybdenum_polymetallic_deposit_Northern_Daxing'anlin_Mountain_China_and_its_significance
      Lu, H.Z., 1990. On Fluid-Melt Inclusions. Geochimica, (3): 225-229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199003003.htm
      Lu, H.Z., 2000. High Temperature, Salintiy and High Concentrated Ore Metal Magmatic Fluids: An Example from Grasberg Cu-Au Porphyry Deposit. Acta Petrologica Sinica, 16(4): 465-472 (in Chinese with English abstract). http://www.researchgate.net/publication/279949078_High_temperature_salinity_and_high_concentrated_ore_metal_magmatic_fluids_An_example_from_Grasberg_Cu-Au_porphyry_deposit
      Lu, H.Z., 2008. Role of CO2 Fluid in the Formation of Gold Deposits: Fluid Inclusion Evidences. Geochimica, 37(4): 321-328 (in Chinese with English abstract).
      Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusion. Science Press, Beijing, 202-229(in Chinese).
      Nie, F.J., Sun. Z.J., Li, C., et al., 2011. Re-Os Isotopic Dating of Molybdenite Separates from Chalukou Porphyry Mo Polymetallic Deposit in Heilongjiang Province. Mineral Deposits, 30(5): 828-836 (in Chinese with English abstract).
      Kamenetsky, V.S., Davidson, P., Mernagh, T.P., et al., 2002. Fluid Bubbles in Melt Inclusions and Pillow-Rim Glasses: High-Temperature Precursors to Hydrothermal Fluids. Chemical Geology, 183: 349-364. doi: 10.1016/s0009-2541(01)00383-7
      Kamenetsky, V.S., Naumov, V.B., Davidson, P., et al., 2004. Immiscibility between Silicate Magmas and Aqueous Fluids: A Melt Inclusion Pursuit into the Magmatic-Hydrothermal Transition in the Omsukchan Granite (NE Russia). Chemical Geology, 210, 73-90. doi: 10.1016/j.chemgeo.2004.06.016
      Klemm, L.M., Pettke, T., Heinrich, C.A., 2008. Fluid and Source Magma Evolution of the Questa Porphyry Mo Deposit, New Mexico USA. Mineralium Deposita, 43: 533-552. doi: 10.1007/s00126-008-0181-7
      Phillips, G.N., Evans, K, A., 2004. Role of CO2 in the Formation of Gold Deposits. Nature, 429(6994): 860-863. doi: 10.1038/nature02644
      Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012. Individual Oil Inclusion Composition Prediction and Its Application in Oil and Gas Accumulation Studies. Earth Science—Journal of China University of Geosciences, 37(4): 815-824 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204021.htm
      Qin, K.Z., Li, H.M., Li, W.S., et al., 1999. Intrusion and Mineralization Ages of the Wunugetushan Porphyry Cu-Mo Deposit, Inner Mongolia, Northwestern China. Geological Review, 45(2): 180-185 (in Chinese with English abstract).
      Roedder, E., 1972. The Composition of Fluid Inclusions. US Geological Survey Paper 440 J, U.S.A., 164.
      Roedder, E., 1984. Fluid Inclusions: Reviews in Mineralogy, 12. Mineralogical Society of America, Washington, 646. http://www.scienceopen.com/review?vid=b5fccac8-cd59-4859-82d8-1d5f74572218
      Rowe, A., 2012. Ore Genesis and Fluid Evolution of the Goat Hill Orebody, Questa Climax-Type Porphyry-Mo System, NM and Its Comparison to the Climax-Type Deposits of the Colorado Mineral Belt (Dissertation). Department of Earth & Environmental Science, New Mexico Institute of Mining & Technology, Socorro, New Mexico.
      Ulrich, T., Mavrogenes, J., 2008. An Experimental Study of the Solubility of Molybdenum in H2O and KCl-H2O Solutions from 500 ℃ to 800 ℃, and 150 to 300 MPa. Geochimica et Cosmochimica Acta, 72(9): 2316-2330. doi: 10.1016/j.gca.2008.02.014
      Wang, L.Y., Sun, N.R., Zhong, L.P., 2010. The Regional Geological Characteristics and Prospecting Method of the Northern Great Xing'an Range. Jilin Geology, 29(1): 36-40 (in Chinese).
      Wang, J.P., Han, L., Lü, K.P., 2011. Geological Characteristics the Chalukou Molybdenum Polymetallic Ore Deposit, Daxing'anling. Mineral Resources and Geology, 25(6): 486-490 (in Chinese with English abstract).
      Wei, H., Xu, J.H., Zeng, Q.D., et al., 2011. Fluid Evolution of Alteration and Mineralization at the Duobaoshan Porphyry Cu(Mo)Deposit, Heilongjiang Province. Acta Petrologica Sinica, 27(5): 1361-1374(in Chinese with English abstract).
      Wu, X.M., Zhou, H.Y., Peng, X.T., 2007. Experimental Studies on Fluid Inclusions in Hydrothermal Anhydrite: Effects of the Formation of Gypsum. Geological Journal of China Universities, 13(4): 722-729(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200704017.htm
      Wilkinson, J.J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1-4): 229-272. doi: 10.1016/s0024-4937(00)00047-5
      Xiang, A.P., Yang, Y.C., Li, G.T., et al., 2012. Diagenetic and Metallogenic Ages of Duobaoshan Porphyry Cu-Mo Deposit in Heilongjiang Province. Mineral Deposits, 31(6): 1237-1248 (in Chinese with English abstract).
      Xie, Y.L., Xu, J.H., Yang, Z.S., et al., 2004. SEM/EDS Study of Daughter Minerals of Fluid Inclusions in Garnet and Diopside from Tongguanshan Copper Deposit. Mineral Deposits, 23(3): 375-348 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200403010.htm
      Xiong, S.F., 2011. Ore-Forming Fluid and Metallogenic Mechanism of the Qiyugou Gold Deposit, Henan Province, China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Xiong, S.F., He, M.C., Yao, S.Z., et al., 2014a. Fluid Evolution of the Chaluokou Giant Mo Deposit in the Northern Great Xing'an Range, NE China. Geological Journal. doi: 10.1002/gj.2588
      Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2014b. Critical-Supercritical Fluid Inclusions Characteristics and Ore-Forming Fluids Evolution of Qiyugou Gold Deposit, Henan Province. Journal of Jilin University (Earth Science Edition), 44(1): 120-133 (in Chinese with English abstract). doi: 10.13278/j.cnki.jjuese.20141110
      Xu, J.H., Wei, H., Wang, H.Y., et al., 2012. Sub-Volcanic Hydrothermal Mineralization of the Wulaga Gold Deposit, Heilongjiang, China: Evidences from Melt and Fluid Inclusions. Acta Petrologica Sinica, 28(4): 1305-1316 (in Chinese with English abstract).
      Yang, Z.M., Xie, Y.L., Li, G.M., et al., 2005. Study of Fluid Inclusions from Tinggong Porphyry Copper Deposit in Gangdese Belt, Tibet. Mineral Deposits, 24(6): 584-594(in Chinese with English abstract). http://www.researchgate.net/publication/282715446_Study_of_fluid_inclusions_from_Tinggong_porphyry_copper_deposit_in_Gangdese_belt_Tibet
      Zhu, H.P., Wang, L.J., 2000. Determining Gaseous Composition of Fluid Inclusions with Quadrupole Mass Spectrometer. Science in China (Series D), 31(7): 586-590 (in Chinese).
      Zhang, D.H., Liu, W., 1998. Fluid Inclusion Compositions of Au Deposits and Their Ore Genesis Significance: The Discussion on the Origin of Ore-Forming Fluid of Shibangou Gold Deposit, Xixia, Henan Province. Geological Science and Technology Information, 17(Suppl.): 61-71 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ8S1.012.htm
      Zhai, P.Q., Chen, H.H., 2013. Discharging Zones of Overpressure System in Qiongdongnan Basin, Northern South China Sea: Implications for Favorable Sites of Natural Gas Accumulation. Earth Science—Journal of China University of Geosciences, 38(4): 832-842(in Chinese with English abstract). doi: 10.3799/dqkx.2013.081
      陈红汉, 吴悠, 肖秋苟, 2013. 青藏高原中-新生代沉积盆地热体制与古地温梯度演化. 地球科学——中国地质大学学报, 38(3): 541-552. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303013.htm
      陈志广, 张连昌, 万博, 等, 2008. 内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义. 岩石学报, 24(1): 115-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801010.htm
      陈衍景, 张成, 李诺, 等, 2012. 中国东北钼矿床地质. 吉林大学学报(地球科学版), 42(5): 1223-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205002.htm
      何谋惷, 张志坚, 2001. 显微激光拉曼光谱在矿床学中的应用. 岩矿测试, 20(1): 43-47. doi: 10.3969/j.issn.0254-5357.2001.01.011
      胡受奚, 赵乙英, 孙景贵, 等, 2002. 华北地台重要金矿成矿过程中的流体作用及其来源研究. 南京大学学报(自然科学版), 38(3): 381-391. doi: 10.3321/j.issn:0469-5097.2002.03.013
      李诺, 孙亚莉, 李晶, 等, 2007. 内蒙古乌努格吐山斑岩铜钼矿床辉钼矿铼锇等时线年龄及其成矿地球动力学背景. 岩石学报, 23(11): 2881-2888. doi: 10.3969/j.issn.1000-0569.2007.11.018
      刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(01): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024
      刘军, 毛景文, 武广, 等, 2013a. 大兴安岭北部岔路口斑岩钼矿床岩浆岩锆石U-Pb年龄及其地质意义. 地质学报, 87(2) : 208-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302008.htm
      刘军, 武广, 王峰, 等, 2013b. 黑龙江省岔路口斑岩钼矿床流体包裹体和稳定同位素特征. 中国地质, 40(4): 1231-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201304022.htm
      刘翼飞, 聂凤军, 孙振江, 等, 2011. 岔路口特大型钼多金属矿床的发现及其意义. 矿床地质, 30(4): 759-764. doi: 10.3969/j.issn.0258-7106.2011.04.016
      卢焕章, 1990. 流体熔体包裹体. 地球化学, (3): 225-229. doi: 10.3321/j.issn:0379-1726.1990.03.004
      卢焕章, 2000. 高盐度、高温和高成矿金属的岩浆成矿流体-以格拉斯伯格Cu-Au矿为例. 岩石学报, 16(4): 465-472. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004000.htm
      卢焕章, 2008. CO2流体与金矿化: 流体包裹体的证据. 地球化学, 37(4): 321-328. doi: 10.3321/j.issn:0379-1726.2008.04.006
      卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社, 202-229.
      聂凤军, 孙振江, 李超, 等, 2011. 黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 矿床地质, 30(5): 828-836. doi: 10.3969/j.issn.0258-7106.2011.05.006
      平宏伟, 陈红汉, 宋国奇, 等, 2012. 单个油包裹体组分预测及其在油气成藏研究中的应用. 地球科学——中国地质大学学报, 37(4): 815-824. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204021.htm
      秦克章, 李惠民, 李伟实, 等, 1999. 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代. 地质论评, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011
      王来云, 孙念仁, 钟立平, 2010. 大兴安岭北段贵金属有色金属区域成矿地质特征及找矿方法. 吉林地质, 29(1): 36-40. doi: 10.3969/j.issn.1001-2427.2010.01.009
      王建平, 韩龙, 吕克鹏, 2011. 大兴安岭岔路口钼多金属矿床地质特征. 矿产与地质, 25(6): 486-490. doi: 10.3969/j.issn.1001-5663.2011.06.009
      魏浩, 徐九华, 曾庆栋, 等, 2011. 黑龙江多宝山斑岩铜(钼)矿床蚀变-矿化阶段及其流体演化. 岩石学报, 27(5): 1361-1374. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105012.htm
      吴雪枚, 周怀阳, 彭晓彤, 2007. 热液硬石膏流体包裹体的显微测温实验研究—石膏子晶的形成对盐度和均一温度测量的影响. 高校地质学报, 13(4): 722-729. doi: 10.3969/j.issn.1006-7493.2007.04.016
      向安平, 杨郧城, 李贵涛, 等, 2012. 黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究. 矿床地质, 31(6): 1237-1248. doi: 10.3969/j.issn.0258-7106.2012.06.009
      谢玉玲, 徐九华, 杨竹森, 等, 2004. 铜官山铜矿床矽卡岩矿物中流体包裹体及子矿物的扫描电镜研究. 矿床地质, 23(3): 375-348. doi: 10.3969/j.issn.0258-7106.2004.03.011
      熊索菲, 2011. 河南嵩县祁雨沟金矿成矿流体及成矿机制研究(硕士学位论文). 武汉: 中国地质大学.
      熊索菲, 姚书振, 宫勇军, 等, 2014. 河南祁雨沟金矿临界―超临界包裹体特征及成矿流体演化. 吉林大学学报(地球科学版), 44(1): 120-133. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401010.htm
      徐九华, 魏浩, 王燕海, 等, 2012. 黑龙江乌拉嘎金矿的次火山岩浆-热液成矿: 熔体-流体包裹体证据. 岩石学报, 28(4): 1305-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204027.htm
      杨志明, 谢玉玲, 李光明, 等, 2005. 西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究. 矿床地质, 24(6): 584-594. doi: 10.3969/j.issn.0258-7106.2005.06.002
      朱和平, 王莉娟, 2001. 四极质谱测定流体包裹体中的气相成分. 中国科学(D辑), 31(7): 586-590. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200107007.htm
      张德会, 刘伟, 1998. 流体包裹体成分与金矿床成矿流体来源—以河南西峡石板沟金矿床为例. 地质科技情报, 17(增刊): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S1.012.htm
      翟普强, 陈红汉, 2013. 琼东南盆地超压系统泄压带: 可能的天然气聚集场所. 地球科学——中国地质大学学报, 38(4): 832-842. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (2958) PDF downloads(220) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return