• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 10
    Oct.  2014
    Turn off MathJax
    Article Contents
    Sun Hui, Jiang Tao, Li Chunfeng, Xu Le, 2014. Characteristics of Gravity Flow Deposits in Slope Basin of Nankai Trough and Their Responses to Subduction Tectonics. Earth Science, 39(10): 1283-1294. doi: 10.3799/dqkx.2014.121
    Citation: Sun Hui, Jiang Tao, Li Chunfeng, Xu Le, 2014. Characteristics of Gravity Flow Deposits in Slope Basin of Nankai Trough and Their Responses to Subduction Tectonics. Earth Science, 39(10): 1283-1294. doi: 10.3799/dqkx.2014.121

    Characteristics of Gravity Flow Deposits in Slope Basin of Nankai Trough and Their Responses to Subduction Tectonics

    doi: 10.3799/dqkx.2014.121
    • Received Date: 2014-03-20
    • Publish Date: 2014-10-01
    • Nankai trough is one of seismogenic zones known for massive earthquakes in the world. Gravity flow deposits in slope basin of Nankai trough accretionary prism record the active history of magesplay faults and the recurrences of great earthquakes. Based on the data of integrated ocean drilling program (IODP), this study explores the characteristics of gravity flow deposits in slope basin and illustrates their implications to the activities of magesplay faults and great earthquakes. The results show that the slope basin was filled successively with wedge-shaped mass transport deposits (MTDs), canyon system and superficial MTDs. Wedge-shaped MTDs developed in the initial stage of magesplay fault activity, which is wedge-shaped and mainly composed of muddy breccia, indicating continuous and strong activities of the magesplay faults at the initial stage. Canyon system consists of several kinds of canyons including slope canyons, great MTDs canyon and axial canyon, which are controlled by steepening slope, increasing regional interstitial fluid pressure and anisotropic uplifting. Superficial MTDs consist of stacking multi-stage low amplitude MTDs and represent as plenty of scars, which formed in a relatively short time, but extensively. It may be caused by the seafloor shaking during a great earthquake. These characteristics of gravity flow deposits record the history of magesplay fault activities and recurrences of great earthquakes as follows: 1.95-1.55 Ma, magesplay fault reactivated sharply at the initial stage which triggered slumps in the upper wall of magesplay fault; 1.55-1.07 Ma, coupling and activities of magesplay fault in the west domain caused strata compressed, deformed and energy assembled in the prism as well as in the magesplay fault; 1.07 Ma to now, energy in the mageplay fault was released discontinuously that resulted in multi great earthquakes.

       

    • loading
    • Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168. http://www.researchgate.net/publication/247468523_Sedimentology_of_Some_Flysch_Deposits_A_Graphic_Approach_To_Facies_Interpretation
      Bull, S., Cartwright, J., Huuse, M., 2009. A Review of Kinematic Indicators from Mass-Transport Complexes Using 3D Seismic Data. Marine and Petroleum Geology, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011
      Cochonat, P., Cadet, J.P., Lallemant, S.J., et al., 2002. Slope Instabilities and Gravity Processes in Fluid Migration and Tectonically Active Environment in the Eastern Nankai Accretionary Wedge (KAIKO-Tokai'96 Cruise). Marine Geology, 187(1): 193-202. doi: 10.1016/S0025-3227(02)00266-9
      Fergusson, C.L., 2003. Provenance of Miocene-Pleistocene Turbidite Sands and Sandstones, Nankai Trough, Ocean Drilling Program Leg 190. Proceedings of the Ocean Drilling Program, Scientific Results, 190(196): 1-28. doi: 10.2973/odp.proc.sr.190196.205.2003
      Hampton, M.A., Lee, H.J., Locat, J., 1996. Submarine Landslides. Reviews of Geophysics, 34(1): 33-59. doi: 10.1029/95RG03287
      Kimura, G., Moore, G.F., Strasser, M., et al., 2011. Spatial and Temporal Evolution of the Megasplay Fault in the Nankai Trough. Geochemistry, Geophysics, Geosystems, 12(3): Q0A008. doi: 10.1029/2010GC003335
      Kimura, G., Screaton, E.J., Curewitz, D., et al., 2008. NanTroSEIZE Stage 1A: NanTroSEIZE Shallow Megasplay and Frontal Thrusts. IODP Prel. Rept., 316. doi: 10.2204/iodp.pr.316.2008
      Lee, H.J., Locat, J., Desgagnés, P., et al., 2007. Submarine Mass Movements on Continental Margins. In: Nittrouer, C.A., Austin, J.A., Field, M.E., et al., eds., Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy, Int, Assoc. Sedimentol., Gent, 213-274. doi: 10.1002/9781444304398.ch5
      Li, C.F., Su, X., Jiang, T., et al., 2010. Deformation at the Front of the Accretionary Prism of the Nankai Trough, Japan: Evidence from Core Samples. Advances in Earth Science, 25(2): 203-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201002015.htm
      Locat, J., Lee, H.J., 2002. Submarine Landslides: Advances and Challenges. Canadian Geotechnical Journal, 39(1): 193-212. doi: 10.1139/T01-089
      Lowe, D.R., 1982. Sediment Gravity Flows: Ⅱ. Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. Journal of Sedimentary Research, 52(1): 279-297.
      Miyazaki, S., Heki, K., 2001. Crustal Velocity Field of Southwest Japan: Subduction and Arc-Arc Collision. Journal of Geophysical Research, 106(B3): 4305-4326. doi: 10.1029/2000JB900312
      Moore, G.F., Bangs, N.L., Taira, A., et al., 2007. Three-Dimensional Splay Fault Geometry and Implications for Tsunami Generation. Science, 318(5853): 1128-1131. doi: 10.1126/science.1147195
      Moore, G.F., Karig, D.E., Shipley, T.H., et al., 1991. Structural Framework of the ODP LEG 131 Area, Nankai Trough. Proceedings of the Ocean Drilling Program, Initial Reports, 131: 15-20. doi: 10.2973/odp.proc.ir.131.102.1991
      Moore, G.F., Park, J.O., Bangs, N.L., et al., 2009. Structural and Seismic Stratigraphic Framework of the NanTroSEIZE Stage 1 Transect. In: Kinoshita, M., Tobin, H., Ashi, J., et al., eds., Proceedings of IOOP, Integrated Ocean Drilling Program Management International, Inc., Texas, 314-316: 1-46. doi: 10.2204/iodp.proc.314315316.102.200
      Moscardelli, L., Hornbach, M., Wood, L., 2010. Tsunamigenic Risks Associated with Mass Transport Complexes in Offshore Trinidad and Venezuela. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, 28: 733-744. doi: 10.1007/978-90-481-3071-9_59
      Mutti, E., Ricci Lucchi, F., 1972. Le Torbiditi Dell'Appennino Settentrionale: Introduzione All'analisi Di Facies. Memorie della Societa Geologica Italiana, 11(2): 161-199.
      Omura, A., Ikehara, K., 2010. Deep-Sea Sedimentation Controlled by Sea-Level Rise during the Last Deglaciation, an Example from the Kumano Trough, Japan. Marine Geology, 274(1): 177-186. doi: 10.1016/j.margeo.2010.04.002
      Orange, D.L., Breen, N.A., 1992. The Effects of Fluid Escape on Accretionary Wedges 2. Seepage Force, Slope Failure, Headless Submarine Canyons, and Vents. Journal of Geophysical Research: Solid Earth, 97(B6): 9277-9295. doi: 10.1029/92JB00460
      Palanques, A., Martín, J., Puig, P., et al., 2006. Evidence of Sediment Gravity Flows Induced by Trawling in the Palamos (Fonera) Submarine Canyon (Northwestern Mediterranean). Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 53(2): 201-214. doi: 10.1016/j.dsr.2005.10.003
      Park, J., Moore, G.F., Tsuru, T., et al., 2004. A Subducted Oceanic Ridge Influencing the Nankai Megathrust Earthquake Rupture. Earth and Planetary Science Letters, 217(1): 77-84. doi: 10.1016/S0012-821X(03)00553-3
      Pettingill, H.S., 1998. Turbidite Giants-Lessons from the World's 40 Largest Turbidite Discoveries. EAGE/AAPG 3rd Research Symposium-Developing and Managing Turbidite Reservoirs, Almeria.
      Pickering, K.T., Underwood, M.B., Taira, A., 1992. Open-Ocean to Trench Turbidity-Current Flow in the Nankai Trough: Flow Collapse and Reflection. Geology, 20(12): 1099-1102. doi: 10.2973/odp.proc.sr.131.104.1993
      Puig, P., Ogston, A.S., Mullenbach, B.L., et al., 2004. Storm-Induced Sediment Gravity Flows at the Head of the Eel Submarine Canyon, Northern California Margin. Journal of Geophysical Research: Oceans, 109(C3): 1-10. doi: 10.1029/2003JC001918
      Ratzov, G., Collot, J., Sosson, M., et al., 2010. Mass-Transport Deposits in the Northern Ecuador Subduction Trench: Result of Frontal Erosion over Multiple Seismic Cycles. Earth and Planetary Science Letters, 296(1): 89-102. doi: 10.1016/j.epsl.2010.04.048
      Sakaguchi, A., Kimura, G., Strasser, M., et al., 2011. Episodic Seafloor Mud Brecciation due to Great Subduction Zone Earthquakes. Geology, 39(10): 919-922. doi: 10.1130/G32043.1
      Schnellmann, M., Anselmetti, F.S., Giardini, D., et al., 2002. Prehistoric Earthquake History Revealed by Lacustrine Slump Deposits. Geology, 30(12): 1131-1134. doi:10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2
      Seno, T., Stein, S., Gripp, A.E., 1993. A Model for the Motion of the Philippine Sea Plate Consistent with NUVEL-1 and Geological Data. Journal of Geophysical Research: Solid Earth, 98(B10): 17941-17948. doi: 10.1029/93JB00782
      Shanmugam, G., 2000.50 Years of the Turbidite Paradigm (1950s—1990s): Deep-Water Processes and Facies Models—A Critical Perspective. Marine and Petroleum Geology, 17(2): 285-342. doi: 10.1016/S0264-8172(99)00011-2
      Shiki, T., 1996. Reading of the Trigger Records of Sedimentary Events—A Problem for Future Studies. Sedimentary Geology, 104(1-4): 249-255. doi: 10.1016/0037-0738(95)00132-8
      Shiki, T., Cita, M.B., Gorsline, D.S., 2000. Sedimentary Features of Seismites, Seismo-Turbidites and Tsunamiites—An Introduction. Sedimentary Geology, 135(1-4): 7-9. doi: 10.1016/s0037-0738(00)00058-0
      Shirai, M., Omura, A., Wakabayashi, T., et al., 2010. Depositional Age and Triggering Event of Turbidites in the Western Kumano Trough, Central Japan during the Last ca. 100 Years. Marine Geology, 271(3-4): 225-235. doi: 10.1016/j.margeo.2010.02.015
      Stow, D.A., Mayall, M., 2000. Deep-Water Sedimentary Systems: New Models for the 21st Century. Marine and Petroleum Geology, 17(2): 125-135. doi: 10.1016/S0264-8172(99)00064-1
      Stow, D.A., Shanmugam, G., 1980. Sequence of Structures in Fine-Grained Turbidites: Comparison of Recent Deep-Sea and Ancient Flysch Sediments. Sedimentary Geology, 25(1-2): 23-42. doi: 10.1016/0037-0738(80)90052-4
      Strasser, M., Moore, G.F., Kimura, G., et al., 2009. Origin and Evolution of a Splay Fault in the Nankai Accretionary Wedge. Nature Geoscience, 2(9): 648-652. doi: 10.1038/NGEO609
      Strasser, M., Moore, G.F., Kimura, G., et al., 2011. Slumping and Mass Transport Deposition in the Nankai Fore Arc: Evidence from IODP Drilling and 3-D Reflection Seismic Data. Geochemistry, Geophysics, Geosystems, 12(5): 1-24. doi: 10.1029/2010GC003431
      Sultan, N., Cochonat, P., Canals, M., et al., 2004. Triggering Mechanisms of Slope Instability Processes and Sediment Failures on Continental Margins: A Geotechnical Approach. Marine Geology, 213(1-4): 291-321. doi: 10.1016/j.margeo.2004.10.011
      Underwood, M.B., Moore, G.F., Taira, A., et al., 2003. Sedimentary and Tectonic Evolution of a Trench-Slope Basin in the Nankai Subduction Zone of Southwest Japan. Journal of Sedimentary Research, 73(4): 589-602. doi: 10.1306/092002730589
      Underwood, M.B., Orr, R., Pickering, K.T., et al., 1993. Provenance and Dispersal Patterns of Sediments in the Turbidite Wedge of Nankai Trough. Proceedings of the Ocean Drilling Program Leg 131, 131: 15-34. doi: 10.2973/odp.proc.sr.131.105.1993
      Walker, R.G., 1978. Deep-water Sandstone Facies and Ancient Submarine Fans; Models for Exploration for Stratigraphic Traps. AAPG Bulletin, 62(6): 932-966.
      Wang, K., Hu, Y., 2006. Accretionary Prisms in Subduction Earthquake Cycles: The Theory of Dynamic Coulomb Wedge. Journal of Geophysical Research: Solid Earth, 111, B06410. doi: 10.1029/2005JB004094
      Xu, J.R., Zhao, Z.X., Kono, Y., et al., 2003. Regional Characteristics of Stress Field and Its Dynamics in and around the Nankai Trough, Japan. Chinese Journal of Geophysics, 46(4): 488-494 (in Chinese with English abstract).
      李春峰, 苏新, 姜涛, 等, 2010. 日本南海海槽俯冲增生楔前缘的构造变形特征. 地球科学进展, 25(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201002015.htm
      徐纪人, 赵志新, 河野芳辉, 等, 2003. 日本南海海槽地震区域应力场及其板块构造动力学特征. 地球物理学报, 46(4): 488-494. doi: 10.3321/j.issn:0001-5733.2003.04.010
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (3994) PDF downloads(377) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return